Oracle Scratchpad

October 31, 2014

first_rows(10)

Filed under: Bugs,CBO,Execution plans,Oracle — Jonathan Lewis @ 5:31 pm GMT Oct 31,2014

No, not the 10th posting about first_rows() this week – whatever it may seem like – just an example that happens to use the “calculate costs for fetching the first 10 rows” optimizer strategy and does it badly. I think it’s a bug, but it’s certainly a defect that is a poster case for the inherent risk of using anything other than all_rows optimisation.  Here’s some code to build a couple of sample tables:


begin
	dbms_stats.set_system_stats('MBRC',16);
	dbms_stats.set_system_stats('MREADTIM',12);
	dbms_stats.set_system_stats('SREADTIM',5);
	dbms_stats.set_system_stats('CPUSPEED',1000);
end;
/

create table t1
as
with generator as (
	select	--+ materialize
		rownum id 
	from dual 
	connect by 
		level <= 1e4
)
select
	rownum					id,
	trunc(dbms_random.value(1,1000))	n1,
	lpad(rownum,10,'0')	small_vc,
	rpad('x',100)		padding
from
	generator	v1,
	generator	v2
where
	rownum <= 1e6
;

create index t1_n1 on t1(id, n1);

create table t2
as
with generator as (
	select	--+ materialize
		rownum id 
	from dual 
	connect by 
		level <= 1e4
)
select
	rownum					id,
	trunc(dbms_random.value(10001,20001))	x1,
	lpad(rownum,10,'0')	small_vc,
	rpad('x',100)		padding
from
	generator	v1,
	generator	v2
where
	rownum <= 1e6
;

create index t2_i1 on t2(x1);

begin
	dbms_stats.gather_table_stats(
		ownname		 => user,
		tabname		 =>'T1',
		estimate_percent => 100,
		method_opt	 => 'for all columns size 1'
	);

	dbms_stats.gather_table_stats(
		ownname		 => user,
		tabname		 =>'T2',
		estimate_percent => 100,
		method_opt	 => 'for all columns size 1'
	);

end;
/


create or replace view  v1
as
select 
	id, n1, small_vc, padding
from	t1 
where	n1 between 101 and 300
union all
select 
	id, n1, small_vc, padding
from	t1 
where	n1 between 501 and 700
;

The key feature of this demonstration is the UNION ALL view and what the optimizer does with it when we have first_rows_N optimisation – this is a simplified model of a production problem I was shown a couple of years ago, so nothing special, nothing invented. Here’s a query that behaves badly:


select
	/*+ gather_plan_statistics */
	v1.small_vc,
	v1.n1
from
	v1,
	t2
where
	t2.id = v1.id
and	t2.x1 = 15000
;

I’m going to execute this query in three different ways – as is, using all_rows optimisation; as is, using first_rows_10 optimisation, then using all_rows optimisation but with the necessary hints to make it follow the first_rows_10 execution path. Here are the resulting plans from an instance of 12.1.0.2 (the same thing happens in 11.2.0.4):


first_rows_10 plan
----------------------------------------------------------------------------------------------
| Id  | Operation                            | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                     |       |     1 |    35 |   107   (0)| 00:00:01 |
|*  1 |  HASH JOIN                           |       |     1 |    35 |   107   (0)| 00:00:01 |
|   2 |   VIEW                               | V1    |    24 |   600 |     4   (0)| 00:00:01 |
|   3 |    UNION-ALL                         |       |       |       |            |          |
|*  4 |     TABLE ACCESS FULL                | T1    |    12 |   240 |     2   (0)| 00:00:01 |
|*  5 |     TABLE ACCESS FULL                | T1    |    12 |   240 |     2   (0)| 00:00:01 |
|   6 |   TABLE ACCESS BY INDEX ROWID BATCHED| T2    |   100 |  1000 |   103   (0)| 00:00:01 |
|*  7 |    INDEX RANGE SCAN                  | T2_I1 |   100 |       |     3   (0)| 00:00:01 |
----------------------------------------------------------------------------------------------

all_rows plan
------------------------------------------------------------------------------------------------
| Id  | Operation                              | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                       |       |    40 |  1400 |   904   (1)| 00:00:01 |
|   1 |  NESTED LOOPS                          |       |    40 |  1400 |   904   (1)| 00:00:01 |
|   2 |   TABLE ACCESS BY INDEX ROWID BATCHED  | T2    |   100 |  1000 |   103   (0)| 00:00:01 |
|*  3 |    INDEX RANGE SCAN                    | T2_I1 |   100 |       |     3   (0)| 00:00:01 |
|   4 |   VIEW                                 | V1    |     1 |    25 |     8   (0)| 00:00:01 |
|   5 |    UNION ALL PUSHED PREDICATE          |       |       |       |            |          |
|   6 |     TABLE ACCESS BY INDEX ROWID BATCHED| T1    |     1 |    20 |     4   (0)| 00:00:01 |
|*  7 |      INDEX RANGE SCAN                  | T1_N1 |     1 |       |     3   (0)| 00:00:01 |
|   8 |     TABLE ACCESS BY INDEX ROWID BATCHED| T1    |     1 |    20 |     4   (0)| 00:00:01 |
|*  9 |      INDEX RANGE SCAN                  | T1_N1 |     1 |       |     3   (0)| 00:00:01 |
------------------------------------------------------------------------------------------------

first_rows_10 plan hinted under all_rows optimisation
---------------------------------------------------------------------------------------------- 
| Id  | Operation                    | Name  | Rows  | Bytes |TempSpc| Cost (%CPU)| Time     | 
---------------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT             |       |   200 |  8600 |       |  6124   (3)| 00:00:01 | 
|*  1 |  HASH JOIN                   |       |   200 |  8600 |    17M|  6124   (3)| 00:00:01 |
|   2 |   VIEW                       | V1    |   402K|    12M|       |  5464   (3)| 00:00:01 | 
|   3 |    UNION-ALL                 |       |       |       |       |            |          | 
|*  4 |     TABLE ACCESS FULL        | T1    |   201K|  3933K|       |  2731   (3)| 00:00:01 | 
|*  5 |     TABLE ACCESS FULL        | T1    |   201K|  3933K|       |  2733   (3)| 00:00:01 | 
|   6 |   TABLE ACCESS BY INDEX ROWID| T2    |   100 |  1000 |       |   103   (0)| 00:00:01 |
|*  7 |    INDEX RANGE SCAN          | T2_I1 |   100 |       |       |     3   (0)| 00:00:01 |
----------------------------------------------------------------------------------------------

I’m not sure why the first_rows_10 plan uses “table access by rowid batched”, but I’d guess it’s because the optimiser calculates that sorting the index rowids before visiting the table may have a small benefit on the speed of getting the first 10 rows – eventually I’ll get around to checking the 10053 trace file. The important thing, though, is the big mistake in the strategy, not the little difference in table access.

In the first_rows_10 plan the optimizer has decided building an in-memory hash table from the UNION ALL of the rows fetched from the two copies of the t1 table will be fast and efficient; but it’s made that decision based on the assumption that it will only get 10 rows from each copy of the table – and at run-time it HAS to get all the relevant t1 rows to build the hash table before it can get any t2 rows. We can get some idea of the scale of this error when we look at the hinted plan under all_rows optimisation – it’s a lot of redundant data and a very expensive hash table build.

In contrast the all_rows plan does an efficient indexed access into the t2 table then, for each row, does a join predicate pushdown into the union all view using an indexed access path. If we only wanted to fetch 10 rows we could stop after doing a minimum amount of work. To demonstrate the error more clearly I’ve re-run the experiment for the first two plans from SQL*PLus, setting the arraysize to 11, the pagesize to 5, and stopping after the first 10 rows. Here are the plans showing the rowsource execution stats:


first_rows_10 plan
------------------------------------------------------------------------------------------------------------------------------------------------
| Id  | Operation                            | Name  | Starts | E-Rows | Cost (%CPU)| A-Rows |   A-Time   | Buffers |  OMem |  1Mem | Used-Mem |
------------------------------------------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                     |       |      1 |        |   107 (100)|     12 |00:00:00.43 |   35150 |       |       |          |
|*  1 |  HASH JOIN                           |       |      1 |      1 |   107   (0)|     12 |00:00:00.43 |   35150 |    24M|  3582K|   23M (0)|
|   2 |   VIEW                               | V1    |      1 |     24 |     4   (0)|    400K|00:00:06.48 |   35118 |       |       |          |
|   3 |    UNION-ALL                         |       |      1 |        |            |    400K|00:00:04.20 |   35118 |       |       |          |
|*  4 |     TABLE ACCESS FULL                | T1    |      1 |     12 |     2   (0)|    200K|00:00:00.71 |   17559 |       |       |          |
|*  5 |     TABLE ACCESS FULL                | T1    |      1 |     12 |     2   (0)|    200K|00:00:00.63 |   17559 |       |       |          |
|   6 |   TABLE ACCESS BY INDEX ROWID BATCHED| T2    |      1 |    100 |   103   (0)|     28 |00:00:00.01 |      32 |       |       |          |
|*  7 |    INDEX RANGE SCAN                  | T2_I1 |      1 |    100 |     3   (0)|     28 |00:00:00.01 |       4 |       |       |          |
------------------------------------------------------------------------------------------------------------------------------------------------

all_rows plan
-----------------------------------------------------------------------------------------------------------------------
| Id  | Operation                              | Name  | Starts | E-Rows | Cost (%CPU)| A-Rows |   A-Time   | Buffers |
-----------------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                       |       |      1 |        |   904 (100)|     12 |00:00:00.01 |     213 |
|   1 |  NESTED LOOPS                          |       |      1 |     43 |   904   (1)|     12 |00:00:00.01 |     213 |
|   2 |   TABLE ACCESS BY INDEX ROWID BATCHED  | T2    |      1 |    100 |   103   (0)|     28 |00:00:00.01 |      32 |
|*  3 |    INDEX RANGE SCAN                    | T2_I1 |      1 |    100 |     3   (0)|     28 |00:00:00.01 |       4 |
|   4 |   VIEW                                 | V1    |     28 |      1 |     8   (0)|     12 |00:00:00.01 |     181 |
|   5 |    UNION ALL PUSHED PREDICATE          |       |     28 |        |            |     12 |00:00:00.01 |     181 |
|   6 |     TABLE ACCESS BY INDEX ROWID BATCHED| T1    |     28 |    212K|     4   (0)|      8 |00:00:00.01 |      93 |
|*  7 |      INDEX RANGE SCAN                  | T1_N1 |     28 |      1 |     3   (0)|      8 |00:00:00.01 |      85 |
|   8 |     TABLE ACCESS BY INDEX ROWID BATCHED| T1    |     28 |    213K|     4   (0)|      4 |00:00:00.01 |      88 |
|*  9 |      INDEX RANGE SCAN                  | T1_N1 |     28 |      1 |     3   (0)|      4 |00:00:00.01 |      84 |
-----------------------------------------------------------------------------------------------------------------------

If I had set the optimizer_mode to first_rows_10 because I really only wanted to fetch (about) 10 rows then I’ve managed to pay a huge overhead in buffer visits, memory and CPU for the privilege – the all_rows plan was much more efficient.

Remember – we often see cases where the first_rows(n) plan will do more work to get the whole data set in order to be able to get the first few rows more quickly (the simplest example is when the optimizer uses a particular index to get the first few rows of a result set in order without sorting rather than doing a (faster) full tablescan with sort. This case, though, is different: the optimizer is choosing to build a hash table as if it only has to put 10 rows into that hash table when it actually HAS to build the whole has table before it can take any further steps – we don’t get 10 rows quicker and the rest more slowly; we just get 10 very slow rows.

Footnote:

It’s possible that this is an example of bug 9633142: (FIRST_ROWS OPTIMIZER DOES NOT PUSH PREDICATES INTO UNION INLINE VIEW) but that’s reported as fixed in 12c, with a couple of patches for 11.2.0.2/3. However, setting “_fix_control”=’4887636:off’, does bypass the problem. (The fix control, introduced in 11.1.0.6 has description: “remove restriction from first K row optimization”)

October 30, 2014

Quiz night

Filed under: CBO,Oracle — Jonathan Lewis @ 6:43 pm GMT Oct 30,2014

Here’s a little puzzle that came up on OTN recently.  (No prizes for following the URL to find the answer) (Actually, no prizes anyway). There’s more in the original code sample than was really needed, so although I’ve done a basic cut and paste from the original I’ve also eliminated a few lines of the text:


execute dbms_random.seed(0)

create table t
as
select rownum as id,
       100+round(ln(rownum/3.25+2)) aS val2,
       dbms_random.string('p',250) aS pad
from dual
connect by level <= 1000
order by dbms_random.value;

begin
  dbms_stats.gather_table_stats(ownname          => user,
                                tabname          => 'T',
                                method_opt       => 'for all columns size 254'
  );
end;
/

column endpoint_value format 9999
column endpoint_number format 999999
column frequency format 999999

select endpoint_value, endpoint_number,
       endpoint_number - lag(endpoint_number,1,0)
                  OVER (ORDER BY endpoint_number) AS frequency
from user_tab_histograms
where table_name = 'T'
and column_name = 'VAL2'
order by endpoint_number
;

alter session set optimizer_mode = first_rows_100;

explain plan set statement_id '101' for select * from t where val2 = 101;
explain plan set statement_id '102' for select * from t where val2 = 102;
explain plan set statement_id '103' for select * from t where val2 = 103;
explain plan set statement_id '104' for select * from t where val2 = 104;
explain plan set statement_id '105' for select * from t where val2 = 105;
explain plan set statement_id '106' for select * from t where val2 = 106;

select statement_id, cardinality from plan_table where id = 0;

The purpose of the method_opt in the gather_table_stats() call is to ensure we get a frequency histogram on val2; and the query against the user_tab_columns view should give the following result:


ENDPOINT_VALUE ENDPOINT_NUMBER FREQUENCY
-------------- --------------- ---------
           101               8         8
           102              33        25
           103             101        68
           104             286       185
           105             788       502
           106            1000       212

Given the perfect frequency histogram, the question then arises why the optimizer seems to calculate incorrect cardinalities for some of the queries; the output from the last query is as follows:


STATEMENT_ID                   CARDINALITY
------------------------------ -----------
101                                      8
102                                     25
103                                     68
104                                    100           -- expected prediction 185
105                                    100           -- expected prediction 502
106                                    100           -- expected prediction 212

I’ve disabled comments so that you can read the answer at OTN if you want to – but see if you can figure out the reason before reading it. (This reproduces on 11g and 12c – and probably on earlier versions all the way back to 9i).

I haven’t done anything extremely cunning with hidden parameters, materialized views, query rewrite, hidden function calls, virtual columns or any other very dirty tricks, by the way.

October 28, 2014

First Rows

Filed under: CBO,Hints,Oracle — Jonathan Lewis @ 7:01 am GMT Oct 28,2014

Following on from the short note I published about the first_rows optimizer mode yesterday here’s a note that I wrote on the topic more than 2 years ago but somehow forgot to publish.

I can get quite gloomy when I read some of the material that gets published about Oracle; not so much because it’s misleading or wrong, but because it’s clearly been written without any real effort being made to check whether it’s true. For example, a couple of days ago [ed: actually some time around May 2012] I came across an article about optimisation in 11g that seemed to be claiming that first_rows optimisation somehow “defaulted” to first_rows(1) , or first_rows_1, optimisation if you didn’t supply a final integer value.

For at least 10 years the manuals have described first_rows (whether as a hint or as a parameter value) as being available for backwards compatibility; so if it’s really just a synonym for first_rows_1 (or first_rows(1)) you might think that the manuals would actually mention this. Even if the manuals didn’t mention it you might just consider a very simple little test before making such a contrary claim, and if you did make such a test and found that your claim was correct you might actually demonstrate (or describe) the test so that other people could check your results.

It’s rather important, of course, that people realise (should it ever happen) that first_rows has silently changed into first_rows_1 because any code that’s using it for backwards compatibility might suddenly change execution path when you did the critical upgrade where the optimizer changed from “backwards compatibility” mode to “completely different optimisation strategy” mode. So here’s a simple check (run from 11.2.0.4 – to make sure I haven’t missed the switch):

begin
        dbms_stats.set_system_stats('MBRC',16);
        dbms_stats.set_system_stats('MREADTIM',10);
        dbms_stats.set_system_stats('SREADTIM',5);
        dbms_stats.set_system_stats('CPUSPEED',1000);
end;
/

create table t2 as
select
        mod(rownum,200)         n1,
        mod(rownum,200)         n2,
        rpad(rownum,180)        v1
from    all_objects
where rownum <= 3000
;

begin
        dbms_stats.gather_table_stats(
                user,
                't2',
                method_opt => 'for all columns size 1'
 
        );
end;
/

create index t2_i1 on t2(n1);

SQL> select /*+ all_rows */ n2 from t2 where n1 = 15;

--------------------------------------------------------------------------
| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |      |    15 |   120 |    12   (0)| 00:00:01 |
|*  1 |  TABLE ACCESS FULL| T2   |    15 |   120 |    12   (0)| 00:00:01 |
--------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   1 - filter("N1"=15)

You’ll notice that I’ve created my data in a way that means I’ll have 15 rows with the value 15, scattered evenly through the table. As a result of the scattering the clustering_factor on my index is going to be similar to the number of rows in the table, and the cost of fetching all the rows by index is going to be relatively high. Using all_rows optimization Oracle has chosen a tablescan.

So what happens if I use the first_rows(1) hint, and how does this compare with using the first_rows hint ?

SQL> select /*+ first_rows(1) */ n2 from t2 where n1 = 15;

-------------------------------------------------------------------------------------
| Id  | Operation                   | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT            |       |     2 |    16 |     3   (0)| 00:00:01 |
|   1 |  TABLE ACCESS BY INDEX ROWID| T2    |     2 |    16 |     3   (0)| 00:00:01 |
|*  2 |   INDEX RANGE SCAN          | T2_I1 |       |       |     1   (0)| 00:00:01 |
-------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   2 - access("N1"=15)

SQL> select /*+ first_rows */ n2 from t2 where n1 = 15;

-------------------------------------------------------------------------------------
| Id  | Operation                   | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT            |       |    15 |   120 |    16   (0)| 00:00:01 |
|   1 |  TABLE ACCESS BY INDEX ROWID| T2    |    15 |   120 |    16   (0)| 00:00:01 |
|*  2 |   INDEX RANGE SCAN          | T2_I1 |    15 |       |     1   (0)| 00:00:01 |
-------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   2 - access("N1"=15)

You might not find it too surprising to see that Oracle used the indexed access path in both cases. Does this mean that first_rows really means (or defaults to) first_rows(1) ?

Of course it doesn’t – you need only look at the estimated cost and cardinality to see this. The two mechanisms are clearly implemented through difference code paths. The first_rows method uses some heuristics to restrict the options it examines, but still gives us the estimated cost and cardinality of fetching ALL the rows using the path it has chosen. The first_rows(1) method uses arithmetic to decide on the best path for getting the first row, and adjusts the cost accordingly to show how much work it thinks it will have to do to fetch just that one row.

Of course, no matter how inane a comment may seem to be, there’s always a chance that it might be based on some (unstated) insight. Is there any way in which first_rows(n) and first_rows are related ? If so could you possibly manage to claim that this establishes a “default value” link?

Funnily enough there is a special case: if you try hinting with first_rows(0) – that’s the number zero – Oracle will use the old first_rows optimisation method – you can infer this from the cost and cardinality figures, or you can check the 10053 trace file, or use a call to dbms_xplan() to report the outline.  It’s an interesting exercise (left to the reader) to decide whether this is the lexical analyzer deciding to treat the “(0)” as a new – and meaningless – token following the token “first_rows”, or whether it is the optimizer recognising the lexical analyzer allowing “first_rows(0)” as a token which the optimizer is then required to treat as first_rows.

Mind you, if you only want the first zero rows of the result set there’s a much better trick you can use to optimise the query – don’t run the query.

 

October 27, 2014

First Rows

Filed under: CBO,Oracle — Jonathan Lewis @ 7:21 am GMT Oct 27,2014

I received an email earlier on this year asking me my opinion of the first_rows option for the optimizer mode. My correspondent was looking at a database with the following settings:

optimizer_mode=first_rows
_sort_elimination_cost_ratio=4

He felt that first_rows was a very old optimizer instruction that might cause suboptimal execution plans in it’s attempt to avoid blocking operations. As for the cost ratio, no-one seemed to be able to explain why it was there.

He was correct; I’ve written the first_rows option a few times in the past – it was left in for backwards compatibility, and reported as such from 9i onwards!

As for the _sort_elimination_cost_ratio – it’s (probably) there to work around the problems caused by first_rows optimisation when you have an ORDER BY clause that could be met by walking an index in competition with a WHERE clause that could be met from another index. Under first_rows the optimizer is highly likely to choose the index for the order by to avoid sorting; but the _sort_elimination_cost_ratio says:  “if the cost of using the index for the ORDER BY is more than N times the cost of using the other index for the WHERE clause then use an index on the WHERE clause and sort the result.”

 The fact that the parameter has been set so low in this case suggests that the end-user:
  1. set first_rows because “it’s an OLTP system” – a myth that even the manuals promoted
  2. found lots of queries taking silly index-driven execution plans because they’d use (say) a primary key index to access and discard vast amounts of  data in the required order, instead of picking up a small amount of data using a better choice of index and then sorting it.
I’ve said many times it in the past: you probably don’t need any first_rows(n) or first_rows_N optimisation, but if you’re using first_rows (i.e. the old option) you really ought to get away from it. Depending on the time you have for testing and your aversion to risk, you might go straight to all_rows, or switch to first_rows_10.  (First_rows_1 can be over-aggressive and introduce some of the same side effects as first_rows).

August 21, 2014

Quiz night

Filed under: CBO,Indexing,NULL,Oracle,Troubleshooting,Tuning — Jonathan Lewis @ 6:05 pm GMT Aug 21,2014

Here’s a script to create a table, with index, and collect stats on it. Once I’ve collected stats I’ve checked the execution plan to discover that a hint has been ignored (for a well-known reason):

create table t2
as
select
        mod(rownum,200)         n1,
        mod(rownum,200)         n2,
        rpad(rownum,180)        v1
from
        all_objects
where
        rownum <= 3000
;

create index t2_i1 on t2(n1);

begin
        dbms_stats.gather_table_stats(
                user,
                't2',
                method_opt => 'for all columns size 1'
        );
end;
/

explain plan for
select  /*+ index(t2) */
        n1
from    t2
where   n2 = 45
;

select * from table(dbms_xplan.display);

----------------------------------------------------------
| Id  | Operation         | Name | Rows  | Bytes | Cost  |
----------------------------------------------------------
|   0 | SELECT STATEMENT  |      |    15 |   120 |    15 |
|*  1 |  TABLE ACCESS FULL| T2   |    15 |   120 |    15 |
----------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   1 - filter("N2"=45)

Of course we don’t expect the optimizer to use the index because we didn’t declare n1 to be not null, so there may be rows in the table which do not appear in the index. The only option the optimizer has for getting the right answer is to use a full tablescan. So the question is this – how come Oracle will obey the hint in the following SQL statement:


explain plan for
select
        /*+
                leading (t2 t1)
                index(t2) index(t1)
                use_nl(t1)
        */
        t2.n1, t1.n2
from
        t2      t2,
        t2      t1
where
        t2.n2 = 45
and     t2.n1 = t1.n1
;

select * from table(dbms_xplan.display);

-------------------------------------------------------------------------------
| Id  | Operation                             | Name  | Rows  | Bytes | Cost  |
-------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                      |       |   225 |  3600 |  3248 |
|   1 |  NESTED LOOPS                         |       |   225 |  3600 |  3248 |
|   2 |   NESTED LOOPS                        |       |   225 |  3600 |  3248 |
|*  3 |    TABLE ACCESS BY INDEX ROWID BATCHED| T2    |    15 |   120 |  3008 |
|   4 |     INDEX FULL SCAN                   | T2_I1 |  3000 |       |     8 |
|*  5 |    INDEX RANGE SCAN                   | T2_I1 |    15 |       |     1 |
|   6 |   TABLE ACCESS BY INDEX ROWID         | T2    |    15 |   120 |    16 |
-------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   3 - filter("T2"."N2"=45)
   5 - access("T2"."N1"="T1"."N1")

I ran this on 11.2.0.4, but it does the same on earlier versions.

Update:

This was clearly too easy – posted at 18:04, answered correctly at 18:21. At some point in it’s evolution the optimizer acquired a rule that allowed it to infer unwritten “is not null” predicates from the join predicate.

 

 

 

July 6, 2014

SQL Plan Baselines

Filed under: CBO,Hints,Oracle — Jonathan Lewis @ 6:34 pm GMT Jul 6,2014

Here’s a thread from Oracle-L that reminded of an important reason why you still have to hint SQL sometimes (rather than following the mantra “if you can hint it, baseline it”).

I have a query that takes 77 seconds to optimize (it’s not a production query, fortunately, but one I engineered to make a point). I can enable sql plan baseline capture and create a baseline for it, and given the nature of the query I can be confident that the resulting plan will always be exactly the plan I want. If I have to re-optimize the query at any time  (because it runs once per hour, say, and is constantly being flushed from the library cache) how much time will the SQL plan baseline save for me ?

The answer is NONE.

The first thing that the optimizer does for a query with a stored sql plan baseline is to optimize it as if the baseline did not exist.

If I want to get rid of that 77 seconds I’ll have to extract (most of) the hints from the SQL Plan Baseline and write them into the query.  (Or, maybe, create a Stored Outline – except that they’re deprecated in the latest version of Oracle, and I’d have to check whether the optimizer used the same strategy with stored outlines or whether it applied the outline before doing any optimisation). Maybe we could do with a hint which forces the optimizer to attempt to use an existing, accepted SQL Baseline without attempting the initial optimisation pass.

 

June 19, 2014

Delete Costs

Filed under: Bugs,CBO,Execution plans,Hints,Indexing,Oracle,Performance — Jonathan Lewis @ 6:18 pm GMT Jun 19,2014

One of the quirky little anomalies of the optimizer is that it’s not allowed to select rows from a table after doing an index fast full scan (index_ffs) even if it is obviously the most efficient (or, perhaps, least inefficient) strategy. For example:


create table t1
as
with generator as (
	select	--+ materialize
		rownum id
	from dual
	connect by
		level <= 1e4
)
select
	rownum			id,
	mod(rownum,100)		n1,
	rpad('x',100)		padding
from
	generator	v1,
	generator	v2
where
	rownum <= 1e5
;

create index t1_i1 on t1(id, n1);
alter table t1 modify id not null;

begin
	dbms_stats.gather_table_stats(
		ownname		 => user,
		tabname		 =>'T1',
		method_opt	 => 'for all columns size 1'
	);
end;
/

explain plan for
select /*+ index_ffs(t1) */ max(padding) from t1 where n1 = 0;

select * from table(dbms_xplan.display(null,null,'outline -note'));

In this case we can see that there are going to be 1,000 rows where n1 = 0 spread evenly across the whole table so a full tablescan is likely to be the most efficient strategy for the query, but we can tell the optimizer to do an index fast full scan with the hint that I’ve shown, and if the hint is legal (which means there has to be at least one column in it declared as not null) the optimizer should obey it. So here’s the plan my hinted query produced:


---------------------------------------------------------------------------
| Id  | Operation          | Name | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------
|   0 | SELECT STATEMENT   |      |     1 |   104 |   207   (4)| 00:00:02 |
|   1 |  SORT AGGREGATE    |      |     1 |   104 |            |          |
|*  2 |   TABLE ACCESS FULL| T1   |  1000 |   101K|   207   (4)| 00:00:02 |
---------------------------------------------------------------------------

We’d have to examine the 10053 trace file to be certain, but it seems the optimizer won’t consider doing an index fast full scan followed by a trip to the table for a select statement (in passing, Oracle would have obeyed the skip scan – index_ss() – hint). It’s a little surprising then that the optimizer will obey the hint for a delete:


explain plan for
delete /*+ index_ffs(t1) cluster_by_rowid(t1) */ from t1 where n1 = 0;

select * from table(dbms_xplan.display(null,null,'outline -note'));

-------------------------------------------------------------------------------
| Id  | Operation             | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------
|   0 | DELETE STATEMENT      |       |  1000 |  8000 |    38  (11)| 00:00:01 |
|   1 |  DELETE               | T1    |       |       |            |          |
|*  2 |   INDEX FAST FULL SCAN| T1_I1 |  1000 |  8000 |    38  (11)| 00:00:01 |
-------------------------------------------------------------------------------

You might note three things from this plan. First, the optimizer can consider a fast full scan followed by a table visit (so why can’t we do that for a select); secondly that the cost of the delete statement is only 38 whereas the cost of the full tablescan in the earlier query was much larger at 207 – surprisingly Oracle had to be hinted to consider this fast full scan path, despite the fact that the cost was cheaper than the cost of the tablescan path it would have taken if I hadn’t included the hint; finally you might note the cluster_by_rowid() hint in the SQL – there’s no matching “Sort cluster by rowid” operation in the plan, even though this plan came from 11.2.0.4 where the mechanism and hint are available.

The most interesting of the three points is this: there is a bug recorded for the second one (17908541: CBO DOES NOT CONSIDER INDEX_FFS) reported as fixed in 12.2 – I wonder if this means that an index fast full scan followed by table access by rowid will also be considered for select statements in 12.2.

Of course, there is a trap – and something to be tested when the version (or patch) becomes available. Why is the cost of the delete so low (only 38, the cost of the index fast full scan) when the number of rows to be deleted is 1,000 and they’re spread evenly through the table ? It’s because the cost of a delete is actually calculated as the cost of the query: “select the rowids of the rows I want to delete but don’t worry about the cost of going to the rows to delete them (or the cost of updating the indexes that will have to be maintained, but that’s a bit irrelevant to the choice anyway)”.

So when Oracle does do a delete following an index fast full scan in 12.2, will it be doing it because it’s the right thing to do, or because it’s the wrong thing ?

To be continued … (after the next release/patch).

 

May 23, 2014

10053 trace

Filed under: CBO,Oracle,Troubleshooting — Jonathan Lewis @ 1:37 pm GMT May 23,2014

I published a note yesterday about enabling SQL trace system-wide for a single statement – and got a response on twitter from Bertrand Drouvot referencing a blog post he’d done a few months ago about using a similar method to dump the optimizer trace (10053) for a statement whenever it was optimized. He also highlighted the dbms_sqldiag package with its dump_trace() procedure – which is something I’d wanted to use a couple of weeks ago but couldn’t remember the package name – and supplied a reference to MoS note 225598.1 which then led on to Greg Rahn’s blog note about dbms_sqldiag.

The package is so important that I decided I’d create a reference note on my blog about it (I finally found my own reference notes on my laptop after getting a clue from Bertrand’s blog about the filename); but, at the same time, I think I have to report that it might not have helped me when I was looking for it two weeks ago. Here’s a critical paragraph from the MoS note:

How to Obtain Tracing of Optimizer Computations (EVENT 10053) (Doc ID 225598.1)

NOTE: The parse environment uses information captured in V$SQL_OPTIMIZER_ENV which does not record all information about the environment that parsed the query such as NLS settings. The result of this is that trace extracted from this may not always generate a trace that is truly representative of what happens when parsed from an application client. For example, if you parse from a client with NLS_SORT set differently to the Database then the application plan may be different to the database and so a trace generated from V$SQL_OPTIMIZER_ENV may cause confusion when the plan for a given cursor in the application is different to the one extracted.

The particular task I wanted to do was to re-optimize a query that had been run by another user (I was logged on as SYS at the time) because the critical user would have added a security predicate based on their current context to the table definitions in the query – and I didn’t know what that predicate would look like, but I knew it would have affected the execution path.  Judging from the note, though, it seems likely that the call to the package wouldn’t have re-acquired the user’s context and might, therefore, not be able to regenerate the necessary predicates. On the other hand, the actual security predicates used during the original optimisation could still be in-memory (in v$vpd_policy) so maybe dump_trace() would be able to do something about them.

Status: to be tested when I next have a few minutes free.

 

May 15, 2014

Subquery with OR

Filed under: 12c,Bugs,CBO,Execution plans,Oracle,subqueries — Jonathan Lewis @ 6:23 pm GMT May 15,2014

Prompted by a pingback on this post, followed in very short order by a related question (with a most gratifying result) on Oracle-L, I decided to write up a note about another little optimizer enhancement that appeared in 12c. Here’s a query that differs slightly from the query in the original article:


select
	id, modded, mod_15
from
	t1
where
	t1.mod_15 = 1                     -- originally t1.mod_15 > 0
and	(   t1.modded is null             -- originally t1.modded = 0
	 or exists (
		select	null
		from	t2
		where	t2.id = t1.modded
	    )
	)
;

As a general principle, the “OR EXISTS” stops the optimizer from unnesting the subquery, so my original article suggested a workaround that required you to rewrite the query with a UNION ALL, using the lnnvl() function (where possible) as the easy way to eliminate accidental duplication. Take a look at the plans for my new query, though – first in 11.2.0.4, then in 12.1.0.1:


Execution Plan for 11.2.0.4
----------------------------------------------------------------------------
| Id  | Operation          | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------
|   0 | SELECT STATEMENT   |       |    34 |   374 |    50   (0)| 00:00:01 |
|*  1 |  FILTER            |       |       |       |            |          |
|*  2 |   TABLE ACCESS FULL| T1    |   667 |  7337 |    50   (0)| 00:00:01 |
|*  3 |   INDEX UNIQUE SCAN| T2_PK |     1 |     3 |     0   (0)| 00:00:01 |
----------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   1 - filter("T1"."MODDED" IS NULL OR  EXISTS (SELECT 0 FROM "T2" "T2"
              WHERE "T2"."ID"=:B1))
   2 - filter("T1"."MOD_15"=1)
   3 - access("T2"."ID"=:B1)

Execution Plan for 12.1.0.1
------------------------------------------------------------------------------
| Id  | Operation            | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------
|   0 | SELECT STATEMENT     |       |    27 |   378 |    50   (0)| 00:00:01 |
|   1 |  NESTED LOOPS SEMI NA|       |    27 |   378 |    50   (0)| 00:00:01 |
|*  2 |   TABLE ACCESS FULL  | T1    |   667 |  7337 |    50   (0)| 00:00:01 |
|*  3 |   INDEX UNIQUE SCAN  | T2_PK |     1 |     3 |     0   (0)| 00:00:01 |
------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   2 - filter("T1"."MOD_15"=1)
   3 - access("T2"."ID"="T1"."MODDED")

As expected, 11.2.0.4 has had to use a filter subquery approach – but 12.1.0.1 has found a different path. For this special “is null” case the optimizer has unnested the subquery and used a “null aware (NA) semi-join”. In this very small example there is no change in the reported cost, and the mechanics of the execution plan will be quite similar at run time – but in real systems there are bound to be cases where the new strategy is more efficient.

Unfortunately …

Bug 18650065 (fixed in 12.2) rears it’s ugly head: WRONG RESULTS ON QUERY WITH SUBQUERY USING OR EXISTS.
I can demonstrate this with the following code:


update t1 set modded = null
where id <= 30;
commit;

select
	id, modded, mod_15
from
	t1
where
	t1.id = 1                     -- previously mod_15 = 1
and	(   t1.modded is null
	 or exists (
		select	null
		from	t2
		where	t2.id = t1.modded
	    )
	)
;

alter table t1 add constraint t1_pk primary key(id);

select
	id, modded, mod_15
from
	t1
where
	t1.id = 1                     -- previously mod_15 = 1
and	(   t1.modded is null
	 or exists (
		select	null
		from	t2
		where	t2.id = t1.modded
	    )
	)
;

And here’s the output from the above script:


30 rows updated.

Commit complete.

        ID     MODDED     MOD_15
---------- ---------- ----------
         1                     1

1 row selected.

Table altered.

no rows selected

I’ve modified a few rows so that the “null-aware” bit of the new transformation matters, but I’ve now got a data set and transformation where I get the wrong results because I’ve defined a primary key (unique would have done) on a critical column in the query. If you check the execution plan you’ll find that the optimizer has switched from a null aware semi-join to a simple nested loop join.

There is a workaround for this problem – disable the relevant feature:

alter session set "_optimizer_null_accepting_semijoin"=false;

For Reference:

Here’s the SQL to generate the data for the above demonstration:

create table t1
as
with generator as (
	select	--+ materialize
		rownum 	id
	from	all_objects
	where	rownum <= 5000
)
select
	rownum			id,
	mod(rownum,999)		modded,
	mod(rownum,15)		mod_15,
	lpad(rownum,10,'0')	small_vc,
	rpad('x',100)		padding
from
	generator	v1,
	generator	v2
where
	rownum <= 10000
;

update t1 set modded = null where modded = 26;

create index t1_i1 on t1(id);
create index t1_i2 on t1(modded);

create table t2
as
select
	2 * rownum		id,
	lpad(rownum,10,'0')	small_vc,
	rpad('x',100)		padding
from
	all_Objects
where
	rownum <= 20
;	

alter table t2 add constraint t2_pk primary key(id);

May 14, 2014

Feature Bypass

Filed under: CBO,Oracle,Troubleshooting — Jonathan Lewis @ 1:23 pm GMT May 14,2014

Here’s a little tip that might be helpful occasionally when you’re trying to work out why the optimizer transformation you were expecting isn’t appearing

If you’ve ever checked the 10053 trace (and who wants to do that for a complex query) you may have noticed lines like:

SU: SU bypassed: Remote table referenced.

So now you know that SU – Subquery Unnesting – has limitations in distributed queries.

When I first saw a line like this, it crossed my mind that it would be useful to keep a reference list of features that could be reported as bypassed, which I do through a simple unix line:

strings -a oracle | grep -i bypassed > bypassed.txt

If you need a reference for the various short codes for transformations you can find it near the top of the 10053 trace, looking like this:

[sourecode gutter="false"]
CBQT – cost-based query transformation
JPPD – join predicate push-down
OJPPD – old-style (non-cost-based) JPPD
FPD – filter push-down
PM – predicate move-around
CVM – complex view merging
SPJ – select-project-join
SJC – set join conversion
SU – subquery unnesting
OBYE – order by elimination
OST – old style star transformation
ST – new (cbqt) star transformation
CNT – count(col) to count(*) transformation
JE – Join Elimination
JF – join factorization
SLP – select list pruning
DP – distinct placement
… big gap here
AP – adaptive plans
[/sourcecode]

May 2, 2014

Costing Bug

Filed under: Bugs,CBO,Execution plans,Oracle,subqueries — Jonathan Lewis @ 8:53 am GMT May 2,2014

It’s amazing how you can find little bugs (or anomalies) as soon as you start to look closely at how things work in Oracle. I started to write an article for All Things Oracle last night about execution plans with subqueries, so wrote a little script to generate some sample data, set up the first sample query, checked the execution plan, and stopped because the final cost didn’t make sense. Before going on I should point out that this probably doesn’t matter and probably wouldn’t cause a change in the execution plan if the calculation were corrected – but it is just an interesting indication of the odd things that can happen when sections of modular code are combined in an open-ended way. Here’s the query (running on 11.2.0.4) with execution plan:


update t1 set 
	n1 = (
		select	max(mod100)
		from	t2
		where	t2.id = t1.id
	),
	n2 = (
		select	max(trunc100)
		from	t3
		where	t3.id = t1.id
	)
where
	id between 101 and 200
;

---------------------------------------------------------------------------------------
| Id  | Operation                     | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------------------
|   0 | UPDATE STATEMENT              |       |   101 |  1212 |   812  (25)| 00:00:05 |
|   1 |  UPDATE                       | T1    |       |       |            |          |
|*  2 |   INDEX RANGE SCAN            | T1_I1 |   101 |  1212 |     2   (0)| 00:00:01 |
|   3 |   SORT AGGREGATE              |       |     1 |     7 |            |          |
|   4 |    FIRST ROW                  |       |     1 |     7 |     3   (0)| 00:00:01 |
|*  5 |     INDEX RANGE SCAN (MIN/MAX)| T2_I1 |     1 |     7 |     3   (0)| 00:00:01 |
|   6 |   SORT AGGREGATE              |       |     1 |     7 |            |          |
|   7 |    FIRST ROW                  |       |     1 |     7 |     3   (0)| 00:00:01 |
|*  8 |     INDEX RANGE SCAN (MIN/MAX)| T3_I1 |     1 |     7 |     3   (0)| 00:00:01 |
---------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   2 - access("ID">=101 AND "ID"<=200)
   5 - access("T2"."ID"=:B1)
   8 - access("T3"."ID"=:B1)

So the cost of running each of the subqueries is 3 – there are two of them, and we expect to run each of the 101 times: for a total cost of 606. So how do we get to 812 as the total cost of the query ?

Further testing:

  • the cost of the plan for updating the two columns with constants is just 4.
  • rebuild the indexes with different values for pctfree to see how the cost changes
  • vary the number of columns updated by subquery
  • check the 10053 trace – for issues or presentation vs. rounding, particularly

Ultimately I decided that for each column updated by subquery the optimizer added 1 to the cost of accessing the table for each row; or, to view it another way, the optimizer used “sum(subquery costs + 1) * number of rows to be updated” so (4 + 4) * 101 + a little bit for the driving table access =  812. This doesn’t seem entirely reasonable – given that a cost is essentially equivalent to assuming that a single block visit is a disk read when we know that when we update multiple columns of the same row we need only read the block into memory at most once. As I said at the start, though this anomaly in costing probably doesn’t matter – there are no further steps to be taken after the update so there’s nothing the optimizer might do differently if the cost of the update had been calculated as 612 rather then 812.

Footnote:

If you want to play about with this query, here’s the code to create the tables – with one proviso, the plan above happens to be one I produced after rebuilding the indexes on t2 and t3 with pctfree 99


create table t1
as
with generator as (
	select  --+ materialize
		rownum id
	from dual
	connect by
		level <= 1e4
)
select
	rownum				id,	
	mod(rownum-1,100)		mod100,
	trunc((rownum - 1)/100)		trunc100,
	rownum				n1,
	rownum				n2,
	lpad(rownum,6,'0')		vc1,
	rpad('x',100)			padding
from
	generator
where
	rownum <= 10000
;

create table t2 as select * from t1;
create table t3 as select * from t1;

create index t1_i1 on t1(id);
create index t2_i1 on t2(id,mod100);
create index t3_i1 on t3(id,trunc100);

begin
	dbms_stats.gather_table_stats(user,'t1');
	dbms_stats.gather_table_stats(user,'t2');
	dbms_stats.gather_table_stats(user,'t3');
end;
/

April 4, 2014

NVL() change

Filed under: CBO,Oracle,Troubleshooting,Upgrades — Jonathan Lewis @ 6:10 pm GMT Apr 4,2014

One of the problems of functions is that the optimizer generally doesn’t have any idea on how a predicate based on function(col) might affect the cardinality. However,  the optimizer group are constantly refining the algorithms to cover an increasing number of special cases more accurately. This is a good thing, of course – but it does mean that you might be unlucky on an upgrade where a better cardinality estimate leads to a less efficient execution plan. Consider for example the simple query (where d1 is column of type date):

select	*
from	t1
where	nvl(d1,to_date('01-01-1900','dd-mm-yyyy')) < sysdate

Now, there are many cases in many versions of Oracle, where the optimizer will appear to calculate the cardinality of

nvl(columnX,{constant}) operator {constant}

as if it were:

columnX is null or columnX operator {constant}

Unfortunately this doesn’t seem to be one of them – until you get to 11.2.something. Here’s a little demonstration code:

create table t1
as
with generator as (
	select	--+ materialize
		rownum id
	from dual
	connect by
		level <= 1e4
)
select
	case
		when rownum > 100 then null else sysdate - rownum
	end	d1
from
	generator	v1,
	generator	v2
where
	rownum <= 50000
;

begin
	dbms_stats.gather_table_stats(
		ownname		 => user,
		tabname		 =>'T1',
		method_opt	 => 'for all columns size 1'
	);
end;
/

set autotrace traceonly explain

prompt	query with NVL

select	*
from	t1
where	nvl(d1,to_date('01-01-1900','dd-mm-yyyy')) < sysdate
;

prompt	query with OR clause

select	*
from	t1
where	d1 is null or d1 < sysdate
;

If you run this code in 11.1.0.7 you get the following – with numeric variations for cost (which I’m interested not in at the moment):


query with NVL
==============
--------------------------------------------------------------------------
| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |      |  2500 |  2500 |    18  (39)| 00:00:01 |
|*  1 |  TABLE ACCESS FULL| T1   |  2500 |  2500 |    18  (39)| 00:00:01 |
--------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   1 - filter(NVL("D1",TO_DATE(' 1900-01-01 00:00:00', 'syyyy-mm-dd
              hh24:mi:ss'))<SYSDATE@!)

query with OR clause
====================
--------------------------------------------------------------------------
| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |      | 50000 | 50000 |    13  (16)| 00:00:01 |
|*  1 |  TABLE ACCESS FULL| T1   | 50000 | 50000 |    13  (16)| 00:00:01 |
--------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   1 - filter("D1" IS NULL OR "D1"<SYSDATE@!)

Take note particularly of the difference in the estimated cardinality for the tablescans.

When you upgrade to 11.2.0.4 (possibly earlier – though there are some nvl() related patches that appeared only in 11.2.0.4), you get this:


query with NVL
==============
--------------------------------------------------------------------------
| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |      | 50000 | 50000 |    18  (39)| 00:00:01 |
|*  1 |  TABLE ACCESS FULL| T1   | 50000 | 50000 |    18  (39)| 00:00:01 |
--------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - filter(NVL("D1",TO_DATE(' 1900-01-01 00:00:00', 'syyyy-mm-dd
              hh24:mi:ss'))<SYSDATE@!)

query with OR clause
====================
--------------------------------------------------------------------------
| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |      | 49900 | 49900 |    13  (16)| 00:00:01 |
|*  1 |  TABLE ACCESS FULL| T1   | 49900 | 49900 |    13  (16)| 00:00:01 |
--------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   1 - filter("D1" IS NULL OR "D1"<SYSDATE@!)

As you can see the estimate for the “NVL()” example is now correct – which means vastly different from the estimate in 11.1.0.7 which seemed to be using the standard “5% for range-based predicate on function(col)”.

It’s interesting to note that a (relatively) small error has crept in to the “OR” example – interestingly the size of the error is exactly the number of rows where d1 is not null (which looks like enough of a coincidence to be a bug – but maybe there’s a good rationale for it)

Conclusion

Yet again, a simple upgrade has the capacity to make a dramatic change to a cardinality estimate – which could mean a significant change to an execution plan and major change in performance. If you’ve read this note, though, you may recognise the pattern that is the driving feature behind the problem.

Footnote:

If you have access to versions 11.2.0.1 through 11.2.0.3 and find that the test data produces different cardinalities please publish the results in the comments – it would be nice to know exactly when this change appears.  (You need only show the body of the execution plans  with labels, not the entire output of the script).

 

March 7, 2014

Subquery Anomaly

Filed under: Bugs,CBO,Execution plans,Oracle,Upgrades — Jonathan Lewis @ 8:57 am GMT Mar 7,2014

Here’s an oddity that appeared on the OTN database forum last night:

We have this query in our application which works fine in 9i but fails in 11gR2 (on Exadata) giving an “ORA-00937: not a single-group group function” error….

… The subquery is selecting a column and it doesn’t have a group by clause at all. I am not sure how is this even working in 9i. I always thought that on a simple query using an aggregate function (without any analytic functions / clause), we cannot select a column without having that column in the group by clause. So, how 11g behaves was not a surprise but surprised to see how 9i behaves. Can someone explain this behaviour?

The poster supplied the suspect query, and it certainly looked as if it should never have worked – but I took a guess that the optimizer was doing some sort of transformation that concealed the problem before the optimizer managed to see the error. The subquery was a little odd because it was doing something it didn’t need to do, and my was guess that the optimizer had recognised the option to simplify the query and the simplification had “accidentally” removed the error. This turned out to be correct, but my guess about exactly what had happened to hide the error was wrong.

Having created a hypothesis I couldn’t resist checking it this morning, so here’s the test case (don’t pay any attention to the actual data I’ve generated, it was a cut-n-paste from a script that I had previously used for something completely different):

create table t1
as
select
	trunc((rownum-1)/15)	n1,
	trunc((rownum-1)/15)	n2,
	rpad(rownum,180)	v1
from all_objects
where rownum <= 3000
;

create table t2
as
select
	mod(rownum,200)		n1,
	mod(rownum,200)		n2,
	rpad(rownum,180)	v1
from all_objects
where rownum <= 3000
;

begin
 	dbms_stats.gather_table_stats(
 		user,
 		't1',
 		method_opt => 'for all columns size 1'
	);

	dbms_stats.gather_table_stats(
		user,
		't2',
		method_opt => 'for all columns size 1'
	);
end;
/

explain plan for
select
	/*+ qb_name(main) */
	*
from t1
where (n2,n1) in (
	select /*+
			qb_name(subq)
			unnest
		*/
		max(t2.n2), t2.n1
	from t2
	where t2.n1 = t1.n1
)
;

You’ll notice, of course, that I don’t have a group by clause at all, so the presence of the t2.n1 in the select list should lead to Oracle error: “ORA-00937: not a single-group group function”.

In versions from 8i to 11.1.0.7, this query could run, and its execution plan looked looked like this:


----------------------------------------------------------------
| Id  | Operation            | Name    | Rows  | Bytes | Cost  |
----------------------------------------------------------------
|   0 | SELECT STATEMENT     |         |   200 | 45200 |    46 |
|*  1 |  HASH JOIN           |         |   200 | 45200 |    46 |
|   2 |   VIEW               | VW_SQ_1 |   200 |  7800 |    31 |
|   3 |    HASH GROUP BY     |         |   200 |  2400 |    31 |
|   4 |     TABLE ACCESS FULL| T2      |  3000 | 36000 |    14 |
|   5 |   TABLE ACCESS FULL  | T1      |  3000 |   547K|    14 |
----------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   1 - access("N2"="MAX(T2.N2)" AND "N1"="N1" AND "ITEM_1"="T1"."N1")

Notice how the optimizer has produced an inline view (VW_SQ_1) from the subquery, using it to drive a hash join; notice how that inline view has an aggregation operation (HASH GROUP BY) in it. In effect the optimizer has rewritten my query like this:

select
	t1.*
from	(
		select
			distinct max(t2.n2) max_n2, t2.n1 item_1, t2.n1
		from	t2
		group by
			t2.n1
	)	vw_sq_1,
	t1
where
	t1.n2 = vw_sq_1.max_n2
and	t1.n1 = vw_sq_1.n1
and	t1.n1 = vw_sq_1.item_1
;

There’s a clue about why this succeeded in the 10053 trace file, which includes the lines:

"Subquery Unnesting on query block SEL$1 (#1)SU: Performing unnesting that does not require costing.
SU: Considering subquery unnest on query block SEL$1 (#1).
SU:   Checking validity of unnesting subquery SEL$2 (#2)
SU:   Passed validity checks.

Compared to the 11.2 lines:

Subquery Unnesting on query block MAIN (#1)SU: Performing unnesting that does not require costing.
SU: Considering subquery unnest on query block MAIN (#1).
SU:   Checking validity of unnesting subquery SUBQ (#2)
SU:     SU bypassed: Failed basic validity checks.
SU:   Validity checks failed.

Whatever check it was that Oracle introduced in 11.2 (maybe a check that the query block was inherently legal), unnesting failed – and if I add an /*+ no_unnest */ hint to the original subquery in the earlier versions of Oracle I get the expected ORA-00937.

The philosophical argument is left to the reader: was the original behaviour a bug, or is the new behaviour the bug ?

 

February 28, 2014

Empty Hash

Filed under: Bugs,CBO,Execution plans,Oracle,Parallel Execution — Jonathan Lewis @ 6:45 pm GMT Feb 28,2014

A little while ago I highlighted a special case with the MINUS operator (that one of the commentators extended to include the INTERSECT operator) relating to the way the second subquery would take place even if the first subquery produced no rows. I’ve since had an email from an Oracle employee letting me know that the developers looked at this case and decided that it wasn’t feasible to address it because – taking a wider view point – if the query were to run parallel they would need a mechanism that allowed some synchronisation between slaves so that every slave could find out that none of the slaves had received no rows from the first subquery, and this was going to lead to hanging problems.

The email reminded me that there’s another issue of the same kind that I discovered several years ago – I thought I’d written it up, but maybe it was on a newsgroup or forum somewhere, I can’t find it on my blog or old website). The problem can be demonstrated by this example:

(more…)

February 26, 2014

Predicate Order

Filed under: Bugs,CBO,Execution plans,Oracle — Jonathan Lewis @ 8:14 am GMT Feb 26,2014

Common internet question: does the order of predicates in the where clause make a difference.
General answer: It shouldn’t, but sometimes it will thanks to defects in the optimizer.

There’s a nicely presented example on the OTN database forum where predicate order does matter (between 10.1.x.x and 11.1.0.7). Note particularly – there’s a script to recreate the issue; note, also, the significance of the predicate section of the execution plan.
It’s bug 6782665, fixed in 11.2.0.1

Next Page »

Theme: Rubric. Get a free blog at WordPress.com

Follow

Get every new post delivered to your Inbox.

Join 4,308 other followers