Oracle Scratchpad

March 10, 2014

Duplicate database

Filed under: Infrastructure,Oracle — Jonathan Lewis @ 6:19 pm GMT Mar 10,2014

One of the people attending my seminar in Munich last week has emailed me some details about a nasty little surprise you may get if you’re thinking about TSPITR (tablespace point in time recovery), and happen to have a few materialized views in your database.

You might have wanted to use the “duplicate target database”  from rman with the “skip tablespace” option to create a duplicate database, excluding tablespaces that you’re not interested in, if you needed to recover a particular tablespace (or set of tablespaces) to a specific point in time.  (Once you’ve done that you can extract the data that you want and then discard the duplicate database). But there’s a requirement for recovery is that the set of tablespaces should be “self-contained”; but what does “self-contained” mean ?

Amongst other things it means that none of the tablespace you skip should contain materialized views. Note carefully, that’s not saying the schema you’re interested in shouldn’t have created any materialized view, or the tablespace you want to duplicate contains a base table for a materialized view in another table; it really does mean – if you’ve got ANY materialized view ANYWHERE in the database, you have to duplicate those tablespaces as part of the process.

Here’s the restriction note from MoS (note the exclamation mark – maybe the Oracle analyst was surprised too):

Restriction Note: 
You MUST NOT exclude 
- SYS-owned objects 
- or tablespaces with rollback segments, 
- nor tablespaces containing “MATERIALIZED VIEWS”! 

Implementation suggestion – always put materialized views (and materialized view logs, and indexes on materialized views) in their own tablespace(s), just in case one day you want to do a tablespace point in time recovery and find you’ve got a few bits of materialized views scattered all around your database.

Footnote:

When I first heard this comment I didn’t believe it (but take a look at MoS document ID: 1287276.1 if you’re finding it hard to believe). Naturally my engine of doom went into overdrive immediately after I was convinced and made me wonder what would happen in a 12c container database with several plugged databases; obviously the existence of a materialized view in one plugged database shouldn’t have any impact on TSPITR for another pluggable database – but I wouldn’t mind if someone tested the hypothesis and reported back what they found.

Update:

It’s just occurred to me that this type of TSPITR problem simply won’t exist if you’re using Delphix as part of your working environment.

March 2, 2014

Auto Sample Size

Filed under: Function based indexes,Indexing,Infrastructure,IOT,LOBs,Oracle,Statistics — Jonathan Lewis @ 6:38 pm GMT Mar 2,2014

In the past I have enthused mightily about the benefits of the approximate NDV mechanism and the benefit of using auto_sample_size to collect statistics in 11g; however, as so often happens with Oracle features, there’s a down-side or boundary condition, or edge case. I’ve already picked this up once as an addendum to an earlier blog note on virtual stats, which linked to an article on OTN describing how the time taken to collect stats on a table increased dramatically after the addition of an index – where the index had this definition:


create bitmap index i_s_rmp_eval_csc_msg_actions on
    s_rmp_evaluation_csc_message (
        decode(instr(xml_message_text,' '),0,0,1)
    )
;

As you might guess from the column name, this is an index based on an XML column, which is stored as a CLOB.

In a similar vein, I showed you a few days ago an old example I had of indexing a CLOB column with a call to dbms_lob.getlength(). Both index examples suffer from the same problem – to support the index Oracle creates a hidden (virtual) column on the table that can be used to hold statistics about the values of the function; actual calculated values for the function call are stored in the index but not on the table itself – but it’s important that the optimizer has the statistics about the non-existent column values.

So what happens when Oracle collects table statistics – if you’ve enable the approximate NDV feature Oracle does a 100% sample, which means it has to call the function for every single row in the table. You will appreciate that the decode(instr()) function on the LOB column is going to read every single LOB in turn from the table – it’s not surprising that the time taken to calculate stats on the table jumped from a few minutes to a couple of hours. What did surprise me was that my call to dbms_lob.getlength() also seemed to read every lob in my example rather than reading the “LOB Locator” data that’s stored in the row – one day I’ll take a look into why that happened.

Looking at these examples it’s probably safe to conclude that if you really need to index some very small piece of “flag” information from a LOB it’s probably best to store it as a real column on the table – perhaps populated through a trigger so you don’t have to trust every single piece of front-end code to keep it up to date. (It would be quite nice if Oracle gave us the option for a “derived” column – i.e. one that could be defined in the same sort of way as a virtual column, with the difference that it should be stored in the table.)

So virtual columns based on LOBs can create a performance problem for the approximate NDV mechanism;  but the story doesn’t stop there because there’s another “less commonly used” feature of Oracle that introduces a different threat – with no workaround – it’s the index organized table (IOT). Here’s a basic example:

create table iot1 (
        id1	number(7,0),
	id2	number(7,0),
	v1	varchar2(10),
	v2	varchar2(10),
	padding	varchar2(500),
        constraint iot1_pk primary key(id1, id2)
)
organization index
including id2
overflow
;

insert into iot1
with generator as (
	select	--+ materialize
		rownum id
	from dual
	connect by
		level <= 1e4
)
select
        mod(rownum,20)                  id1,
        trunc(rownum,100)               id2,
        to_char(mod(rownum,20))         v1,
        to_char(trunc(rownum,100))      v2,
        rpad('x',500,'x')               padding
from
	generator	v1,
	generator	v2
where
	rownum <= 1e5
;

commit;

alter system flush buffer_cache;

alter session set events '10046 trace name context forever';

begin
	dbms_stats.gather_table_stats(
		ownname		 => user,
		tabname		 =>'IOT1',
		method_opt	 => 'for all columns size 1'
	);
end;
/

alter session set events '10046 trace name context off';

You’ll notice I’ve created the table then inserted the data – if I did a “create table as select” Oracle would have sorted the data before inserting it, and that would have helped to hide the problem I’m trying to demonstrate. As it is my overflow segment is very badly ordered relative to the “top” (i.e. index) segment – in fact I can see after I’ve collected stats on the table that the clustering_factor on the index is 100,000 – an exact match for the rows in the table.

Running 11.2.0.4, with a 1MB uniform extent, freelist management, and 8KB block size the index segment held 279 leaf blocks, the overflow segment (reported in view user_tables as SYS_IOT_OVER_81594) held 7,144 data blocks.

So what interesting things do we find in a 10046 trace file after gathering stats – here are the key details from the tkprof results:

SQL ID: 7ak95sy9m1s4f Plan Hash: 1508788224

select /*+  full(t)    no_parallel(t) no_parallel_index(t) dbms_stats
  cursor_sharing_exact use_weak_name_resl dynamic_sampling(0) no_monitoring
  no_substrb_pad  */to_char(count("ID1")),to_char(substrb(dump(min("ID1"),16,
  0,32),1,120)),to_char(substrb(dump(max("ID1"),16,0,32),1,120)),
  to_char(count("ID2")),to_char(substrb(dump(min("ID2"),16,0,32),1,120)),
  to_char(substrb(dump(max("ID2"),16,0,32),1,120)),to_char(count("V1")),
  to_char(substrb(dump(min("V1"),16,0,32),1,120)),
  to_char(substrb(dump(max("V1"),16,0,32),1,120)),to_char(count("V2")),
  to_char(substrb(dump(min("V2"),16,0,32),1,120)),
  to_char(substrb(dump(max("V2"),16,0,32),1,120)),to_char(count("PADDING")),
  to_char(substrb(dump(min("PADDING"),16,0,32),1,120)),
  to_char(substrb(dump(max("PADDING"),16,0,32),1,120))
from
 "TEST_USER"."IOT1" t  /* NDV,NIL,NIL,NDV,NIL,NIL,NDV,NIL,NIL,NDV,NIL,NIL,NDV,
  NIL,NIL*/

call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.00       0.00          0          0          0           0
Execute      1      0.00       0.00          0          0          0           0
Fetch        1      0.37       0.37       7423     107705          0           1
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total        3      0.37       0.37       7423     107705          0           1

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 62     (recursive depth: 1)
Number of plan statistics captured: 1

Rows (1st) Rows (avg) Rows (max)  Row Source Operation
---------- ---------- ----------  ---------------------------------------------------
         1          1          1  SORT AGGREGATE (cr=107705 pr=7423 pw=0 time=377008 us)
    100000     100000     100000   APPROXIMATE NDV AGGREGATE (cr=107705 pr=7423 pw=0 time=426437 us cost=10 size=23944 card=82)
    100000     100000     100000    INDEX FAST FULL SCAN IOT1_PK (cr=107705 pr=7423 pw=0 time=298380 us cost=10 size=23944 card=82)(object id 85913)

********************************************************************************

SQL ID: 1ca2ug8s3mm5z Plan Hash: 2571749554

select /*+  no_parallel_index(t, "IOT1_PK")  dbms_stats cursor_sharing_exact
  use_weak_name_resl dynamic_sampling(0) no_monitoring no_substrb_pad
  no_expand index(t,"IOT1_PK") */ count(*) as nrw,count(distinct
  sys_op_lbid(85913,'L',t.rowid)) as nlb,null as ndk,
  sys_op_countchg(sys_op_lbid(85913,'O',"V1"),1) as clf
from
 "TEST_USER"."IOT1" t where "ID1" is not null or "ID2" is not null

call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.00       0.00          0          0          0           0
Execute      1      0.00       0.00          0          0          0           0
Fetch        1      0.16       0.16          0     100280          0           1
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total        3      0.16       0.16          0     100280          0           1

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 62     (recursive depth: 1)
Number of plan statistics captured: 1

Rows (1st) Rows (avg) Rows (max)  Row Source Operation
---------- ---------- ----------  ---------------------------------------------------
         1          1          1  SORT GROUP BY (cr=100280 pr=0 pw=0 time=162739 us)
    100000     100000     100000   INDEX FULL SCAN IOT1_PK (cr=100280 pr=0 pw=0 time=164597 us cost=6 size=5900000 card=100000)(object id 85913)

The first query collects table and column stats, and we can see that the approximate NDV method has been used because of the trailing text: /* NDV,NIL,NIL,NDV,NIL,NIL,NDV,NIL,NIL,NDV,NIL,NIL,NDV,NIL,NIL*/. In this statement the hint /*+ full(t) */ has been interpreted to mean an index fast full scan, which is what we see in the execution plan. Although there are only 279 blocks in the index and 7,144 blocks in the overflow we’ve done a little over 100,000 buffer visits because for every index entry in the IOT top we’ve done a “fetch by rowid” into the overflow segment (the session stats records these as “table fetch continued row”). Luckily I had a small table so all those visits were buffer gets; on a very large table it’s quite possible that a significant fraction of those buffer gets will turn into single block physical reads.

Not only have we done one buffer visit per row to allow us to calculate the approximate NDV for the table columns, we’ve done the same all over again so that we can calculate the clustering_factor of the index. This is a little surprising since the “rowid” for an item in the overflow section is stored in the index segment but (as you can see in the second query in the tkprof output) Oracle has used column v1 (the first in the overflow segment) in the call to the sys_op_countchg() function where the equivalent call for an ordinary index would use t.rowid so, presumably, the code HAS to access the overflow segment. The really strange thing about this is that the same SQL statement has a call to sys_op_lbid() which uses the (not supposed to exist in IOTs) rowid – so it looks as if it ought to be possible for sys_op_countchg() to do the same.

So – big warning on upgrading to 11g: if you’ve got IOTs with overflows and you switch to auto_sample_size and enable approximate NDV then the time taken to gather stats on those IOTs may (depending to a large extent on the data clustering) take much longer than it used to.

February 21, 2014

Indexing LOBs

Filed under: Function based indexes,Indexing,Infrastructure,LOBs,Oracle — Jonathan Lewis @ 6:42 pm GMT Feb 21,2014

Many years ago, possibly when most sites were still using Oracle 8i, a possible solution to a particular customer problem was to create a function-based index on a CLOB column using the dbms_lob.getlength() function call. I can’t find the notes explaining why this was necessary (I usually have some sort of clue – such as the client name – in the script, but in this case all I had was a comment that “the manuals say you can’t do this, but it works provided you wrap the dbms_lob call inside a deterministic function”).

I never worked out why the dbms_lob.getlength() function wasn’t declared as deterministic – especially since it came complete with a most restrictive restricts_references pragma – so I had just assumed there was probably some good reason based on strange side effects when national language charactersets came into play. But here’s a little detail I noticed recently about the dbms_lob.getlength() function: it became deterministic in 11g, so if the client decided to implement my suggestion (which included the usual sorts of warnings) it’s now legal !

Footnote – the length() function has been deterministic and usable with LOBs for a long time, certainly since late 9i, but in 8i length(lob_col) will produce Oracle error “ORA-00932: inconsistent datatypes”

Index Compression – aargh

Filed under: Bugs,compression,Indexing,Infrastructure,Oracle — Jonathan Lewis @ 7:57 am GMT Feb 21,2014

The problem with telling people that some feature of Oracle is a “good thing” is that some of those people will go ahead and use it; and if enough people use it some of them will discover a hitherto undiscovered defect. Almost inevitably the bug will turn out to be one of those “combinations” bugs that leaves you thinking: “Why the {insert preferred expression of disbelief here} should {feature X} have anything to do with {feature Y}”.

Here – based on index compression, as you may have guessed from the title – is one such bug. I got it first on 11.1.0.7, but it’s still there on 11.2.0.4 and 12.1.0.1

(more…)

February 10, 2014

Row Migration

Filed under: Infrastructure,Oracle,Troubleshooting — Jonathan Lewis @ 6:55 pm GMT Feb 10,2014

At one of the presentations I attended at RMOUG this year the presenter claimed that if a row kept increasing in size and had to migrate from block to block as a consequence then each migration of that row would leave a pointer in the previous block so that an indexed access to the row would start at the original table block and have to follow an ever growing chain of pointers to reach the data.

This is not correct, and it’s worth making a little fuss about the error since it’s the sort of thing that can easily become an urban legend that results in people rebuilding tables “for performance” when they don’t need to.

Oracle behaves quite intelligently with migrated rows. First, the migrated row has a pointer back to the original location and if the row has to migrate a second time the first place that Oracle checks for space is the original block, so the row might “de-migrate” itself; however, even if it can’t migrate back to the original block, it will still revisit the original block to change the pointer in that block to refer to the block it has moved on to – so the row is never more than one step away from its original location. As a quick demonstration, here’s some code to generate and manipulate some data:

(more…)

February 2, 2014

Clustaghhh!

Filed under: clusters,Infrastructure,Oracle,Troubleshooting — Jonathan Lewis @ 10:27 pm GMT Feb 2,2014

It doesn’t matter which bit of Oracle technology you want to use, eventually someone, somewhere, runs into the special case where something nasty happens. Here’s an edge case for people using (index) clusters – Oracle Bug  17866999 ora-1499 for cluster following rman convert

It comes from a conversation on Oracle-L where Jack van Zanen reported a problem of inconsistent results after migrating data between platforms using rman to converts some tablespaces containing index clusters. This is the starting post where he shows a query that is clearly getting the wrong answer (select where channel_number = 503 obviously shouldn’t return data with channel_number 501).

(more…)

January 14, 2014

Single block reads

Filed under: Infrastructure,Oracle,Performance — Jonathan Lewis @ 6:52 pm GMT Jan 14,2014

When a “cache read” tablescan (or index fast full scan) takes place we generally expect to see waits on “db file scattered read” as Oracle performs multi-block reads to do the scan. But we all know that Oracle will skip over blocks that are already in the cache and can therefore end up doing multi-block reads of many different sizes, even down to the point where it does single block reads (waiting for “db file sequential read”).

A quirky little question came up on OTN a little while ago: “for a large table we expect multiblock reads to be positioned at the end of the LRU for prompt re-use; but when Oracle does a single block read as part of a tablescan does it go to the end of the LRU (because it’s part of a large tablescan) or does it go to the mid-point of the LRU (because it’s a single block read)?”

The description of how blocks are treated in a tablescan has been simplified, of course, but the question is still valid – so what’s the answer, and how (without going into an extreme level of detail) would you demonstrate it ?

 

January 13, 2014

xDollar

Filed under: Infrastructure,Oracle — Jonathan Lewis @ 10:09 am GMT Jan 13,2014

I see Tanel has just started a short series of articles on where the X$ data come from so, for those with time on their hands (?anyone?) here’s a little script I wrote a few years ago when I wanted to check which v$ objects corresponded to the same internal structure in the SGA: (as v$session and v$session_wait used to)

It starts with a function that has to be created in the SYS schema – so no doing this on production systems. The it’s a pipelined function so that we can treat its output like a table, which means I need to create an object type and a table type before creating the function.  In the function I select each x$ name from the list of x$ names (x$kqfta) and for each table I construct a dynamic SQL statement selecting the first row from the table.

Over the versions of Oracle, various bugs have resulted in deadlocks and crashes when selecting a row from particular X$ objects, so there a short list of exceptions that has grown gradually over time.  The code has some calls to dbms_output(), which you can choose to hide by setting serveroutput off.  Depending on your system you may see a very large number of X$ with no data in them.

(more…)

January 8, 2014

CR Trivia

Filed under: Infrastructure,Oracle,Performance — Jonathan Lewis @ 6:44 am GMT Jan 8,2014

Everybody “knows” that when you do a tablescan of a table that it starts with two buffer gets on the segment header, though older versions (ca. 8i and earlier) of Oracle used to do 4 buffer gets on the segment header. The upshot of this is that many people still say that if you create a table and insert a single row then you’re going to get 3 buffer gets when you tablescan a table: two for the segment header and one for the data block:

So here’s a test, with the second set of autotrace stats which, for reasons I’ll describe shortly, may not be immediately reproducible on your system:

(more…)

January 6, 2014

LOB changes

Filed under: Infrastructure,LOBs,Oracle,Troubleshooting — Jonathan Lewis @ 7:10 pm GMT Jan 6,2014

It’s always useful to collect baseline information – especially when it helps you notice that the baseline has moved in a way that might explain the next performance problem you see. Here’s an example demonstrating the benefit.

I have a table with a LOB column that is stored out of line. Many years ago I decided that I wanted to compare how the redo generation varied as I change the LOB from cached to nocache (with nologging). So here was one of my simplest test scripts (stripped to a minimum):

(more…)

December 17, 2013

dbms_space usage

Filed under: ASSM,Indexing,Infrastructure,Oracle — Jonathan Lewis @ 6:43 pm GMT Dec 17,2013

Just throwing out a brief comment (one of my many draft notes that I don’t have time to complete) about the dbms_space package. You’re probably familiar with this package and how, for ASSM segments, it can give you a measure of the available space in the blocks in a data segment, reporting 6 possible states of the blocks below the high high water mark (HHWM) e.g.:

(more…)

December 13, 2013

Bitmap Question

Filed under: Indexing,Infrastructure,Oracle,Partitioning — Jonathan Lewis @ 6:09 pm GMT Dec 13,2013

This question came up on the OTN database forum a couple of months ago: “Why doesn’t Oracle allow you to create globally partitioned bitmap indexes?” The obvius answer is “It just doesn’t, okay.” But it can be quite interesting to think of reasons why a particular mechanism might not have been implemented – sometimes the answer can give you an insight into how a feature has been implemented, or it might suggest cases where a feature might not work very well, it might give you some ideas on how to work around a particular limitation, and sometimes it might just help to pass the time on a short flight.

(more…)

December 8, 2013

Buffer Pins

Filed under: Infrastructure,Oracle — Jonathan Lewis @ 6:21 pm GMT Dec 8,2013

Sometimes you get some questions on OTN lead to very geeky investigations. Here’s one that came up a while ago that started with a reasonable observation about recursive subquery factoring, then devolved into a real geek-attack question about buffer headers (x$bh) and buffer pins (x$kccbf).

I contributed a couple of ideas and some basic SQL to the discussion but never got around to doing anything concrete. If anyone has time and is sufficiently curious to play around I’d be interested to see what you did and what conclusions you came to.

 

 

December 1, 2013

Rowids

Filed under: Infrastructure,Oracle,sorting — Jonathan Lewis @ 11:26 am GMT Dec 1,2013

I have, in the past, used the dbms_rowid package to create rowids from block addresses (typically faking the first and last rowids that could appear in an extent); but I’ve just been sent a piece of information by Valentin Nikotin that’s going to make me go back and check whether what I’ve done with the package will always give me the correct results. Here’s a little demonstration code that highlights the issue:

(more…)

November 14, 2013

32K Columns

Filed under: 12c,Function based indexes,Indexing,Infrastructure,Oracle — Jonathan Lewis @ 8:06 am GMT Nov 14,2013

Oracle 12c has increased the maximum length of character-based columns to 32K bytes – don’t get too excited, they’re stored out of lines (so similar in cost to LOBs) and need some modification to the parameter file and data dictionary (starting the database in upgrade mode) before you can use them.

Richard Foote has a pair of articles on indexing such columns:

Be cautious about enabling this option and test carefully – there are going to be a number of side effects, and some of them may require a significant investment in time to resolve. The first one that came to my mind was that if you’ve created a function-based index on a pl/sql function that returns a varchar2() type and haven’t explicitly created the index on a substr() of the return value then the data type of the function’s return value will change from the current default of varchar2(4000) to varchar2(32767) – which means the index will become invalid and can’t be rebuilt or recreated.

Obviously you can redefine the index to include an explicit substr() call – but then you have to find all the code that was supposed to use the index and modify it accordingly.

« Previous PageNext Page »

Theme: Rubric. Get a free blog at WordPress.com

Follow

Get every new post delivered to your Inbox.

Join 4,430 other followers