Oracle Scratchpad

March 11, 2019

sys_op_lbid

Filed under: Indexing,Infrastructure,IOT,Oracle,Statistics — Jonathan Lewis @ 1:23 pm BST Mar 11,2019

I’ve made use of the function a few times in the past, for example in this posting on the dangers of using reverse key indexes, but every time I’ve mentioned it I’ve only been interested in the “leaf blocks per key” option. There are actually four different variations of the function, relevant to different types of index and controlled by setting a flag parameter to one of 4 different values.

The call to sys_op_lbid() take 3 parameters: index (or index [sub]partition object id, a flag vlaue, and a table “rowid”, where the flag value can be one of L, R, O, or G. The variations of the call are as follows:

  • L – the function will return the row directory address  (i.e. something that look like a rowid) of the first index entry in the leaf block that holds the index entry for the referenced table rowid. The effect of this is that the number of distinct values returned by calling the function for every row in the table is equal to the number of index leaf blocks which current hold an active entry.
  • R – Relevant only to bitmap indexes; the function will return the row directory address of the bitmap index entry for the referenced table rowid. The effect of this is that the number of distinct values returned by calling the function for every row in the table is equal to the number of index entries in the bitmap index.
  • O – Relevent only to the primary key index of an index organized table with an overflow. The function is used with a non-key column instead of a rowid and returns a rowid that corresponds to the row directory entry in the overflow segment. An interesting detail of the overflow entries is that there is an “nrid” (next rowid) pointer in the primary key index entry that does not get deleted when all the columns in the related overflow entry are set null – so you can delete all the data from the overflow (set every overflow column in every row to null) and the primary key clustering factor would not change.
  • G – Relevent only to secondary indexes on an index organized table. Like the L and R options this function takes a rowid (which is a special case for IOTs) as one of its inputs and uses the block guess from the secondary index to construct a row directory entry for the first entry in the primary key leaf block that corresponds to that block guess. This serves two purposes – it allows Oracle to calculate the clustering factor of the secondary index (as you walk the secondary index in order how much do you jump around the leaf blocks of the primary key), and it allows Oracle to produce the pct_direct_access figure for the secondary index by joining the secondary index to the primary key index on primary key, and comparing the ‘G’ result for the secondary with the ‘L’ result from the primary, which gives a count of the number of times the guess is correct.

These observations can be confirmed by gathering stats on different structures with trace enabled, and doing a couple of block dumps. For reference the following is just a simple script to create an index organized table with overflow and secondary index:


rem
rem     Script:         sys_op_lbid_2.sql
rem     Author:         Jonathan Lewis
rem     Dated:          Dec 2018
rem

create table t1(
        id      constraint t1_pk primary key,
        v1      ,
        v2      ,
        v3      ,
        padding 
)
organization index
pctthreshold 2
overflow
as
with generator as (
        select 
                rownum id
        from dual 
        connect by 
                level <= 1e4 -- > comment to avoid WordPress format issue
)
select
        rownum,
        lpad(rownum,30),
        lpad(rownum,30),
        lpad(rownum,40),
        rpad('x',100,'x')
from
        generator       v1,
        generator       v2
where
        rownum <= 1e4 -- > comment to avoid WordPress format issue
;

create index t1_i1 on t1(v3);

alter session set sql_trace true;

begin
        dbms_stats.gather_table_stats(
                ownname     => null,
                tabname     => 'T1',
                method_opt  => 'for all columns size 1'
        );
end;
/

alter session set sql_trace false;

select
        object_id, object_name
from
        user_objects
order by
        object_id
;

The significance of the query for object_id and data_object_id shows up in the trace file (and subsequent dumps) when Oracle uses one or other of the values in its SQL and rowid construction.

Here are the interesting SQL statements generated as the stats are gathered – but cosmetically altered to be reader-friendly. In order they are:

  1. Stats for primary key of IOT: using the ‘L’ option for counting leaf blocks and the ‘O’ option for the clustering factor into overflow segment.
  2. Stats for secondary index of IOT: using the ‘L’ option for counting leaf blocks and the ‘G’ option for the clustering factor into the primary key index
  3. Calculate pct_direct_access: the ‘L’ option gives the actual leaf block in the primary key index, the ‘G’ option gives the leaf block guessed by the secondary index

select 
        /*+ index(t,t1_pk) */ 
        count(*) as nrw,
        count(distinct sys_op_lbid(351334,'L',t.rowid)) as nlb,
        null as ndk,
        (sys_op_lbid(351334,'O',V1),1) as clf
from
        t1 t 
where 
        id is not null
;


select 
        /*+ index(t,t1_i1) */ 
        count(*) as nrw,
        count(distinct sys_op_lbid(351335,'L',t.rowid)) as nlb,
        null as ndk,
        sys_op_countchg(sys_op_lbid(351335,'G',t.rowid),1) as clf
from
        t1 t 
where 
        v3 is not null
;


select
        case when count(*) = 0
                then 100
                else round(
                        count(
                                case when substr(gdba,7,9)=substr(lbid,7,9)
                                        then 1
                                        else null
                                end
                        )/count(*)*100
                )
        end
from    (
        select
                /*+
                        ordered
                        use_hash(i.t1 t2)
                        index_ffs(t2,t1_pk)
                */
                sys_op_lbid(351334,'L',t2.rowid) lbid,
                gdba
        from (
                select
                        /*+ index_ffs(t1,t1_i1) */
                        sys_op_lbid(351335,'G',t1.rowid) gdba,
                        t1.ID
                from
                        t1 t1
                ) i,
`               t1 t2
        where
                i.id = t2.id
        )
;

The strange substr(,7,9) that appears in the join between the primary key index and the secondary index is needed because the ‘G’ option uses the object_id of the table to turn an absolute block guess into a rowid while the ‘L’ option is using the data_object_id of the primary key index to turn its block addrss into a rowid. (This means there may be variants of this SQL for IOTs using partitioning.)

 

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Comments and related questions are welcome.

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Powered by WordPress.com.