Oracle Scratchpad

May 3, 2016


Filed under: CBO,compression,Execution plans,Infrastructure,Oracle,Uncategorized — Jonathan Lewis @ 8:11 am BST May 3,2016

The OTN database forum supplied a little puzzle a few days ago – starting with the old, old, question: “Why is the plan with the higher cost taking less time to run?”

The standard (usually correct) answer to this question is that the optimizer doesn’t know all it needs to know to predict what’s going to happen, and even if it had perfect information about your data the model used isn’t perfect anyway. This was the correct answer in this case, but with a little twist in the tail that made it a little more entertaining. Here’s the query, with the two execution plans and the execution statistics from autotrace:

        client_account d, 
        client         e, 
        account        a
        A.acct_nb ='00000000000000722616216'</li>


Plan (A) with a full tablescan of client_account – cost 808, runtime 1.38 seconds, buffer gets 17,955

| Id | Operation                      | Name           | Rows  | Bytes  | Cost (%CPU)| Time     |
|  0 | SELECT STATEMENT               |                |     1 |    59  |   808 (14) | 00:00:10 |
|  1 |  NESTED LOOPS                  |                |     1 |    59  |   808 (14) | 00:00:10 |
|  2 |   NESTED LOOPS                 |                |     1 |    59  |   808 (14) | 00:00:10 |
|* 3 |    HASH JOIN                   |                |     1 |    42  |   806 (14) | 00:00:10 |
|  4 |     TABLE ACCESS BY INDEX ROWID| ACCOUNT        |     1 |    30  |     5  (0) | 00:00:01 |
|* 5 |      INDEX RANGE SCAN          | XAK1ACCOUNT    |     1 |        |     4  (0) | 00:00:01 |
|  6 |     TABLE ACCESS FULL          | CLIENT_ACCOUNT |  9479K|   108M |   763 (10) | 00:00:09 |
|* 7 |    INDEX UNIQUE SCAN           | XPKCLIENT      |     1 |        |     1  (0) | 00:00:01 |
|  8 |   TABLE ACCESS BY INDEX ROWID  | CLIENT         |     1 |    17  |     2  (0) | 00:00:01 |

     0  recursive calls
     0  db block gets
 17955  consistent gets
     0  physical reads
     0  redo size
   623  bytes sent via SQL*Net to client
   524  bytes received via SQL*Net from client
     2  SQL*Net roundtrips to/from client
     0  sorts (memory)
     0  sorts (disk)
     1  rows processed

Plan (B) with an index fast full scan on a client_account index – cost 1,190, runtime 0.86 seconds, buffer gets 28696

| Id | Operation                      | Name              | Rows  | Bytes  | Cost (%CPU)| Time     |
|  0 | SELECT STATEMENT               |                   |     1 |    59  |  1190  (8) | 00:00:14 |
|  1 |  NESTED LOOPS                  |                   |     1 |    59  |  1190  (8) | 00:00:14 |
|  2 |   NESTED LOOPS                 |                   |     1 |    59  |  1190  (8) | 00:00:14 |
|* 3 |    HASH JOIN                   |                   |     1 |    42  |  1188  (8) | 00:00:14 |
|  4 |     TABLE ACCESS BY INDEX ROWID| ACCOUNT           |     1 |    30  |     5  (0) | 00:00:01 |
|* 5 |      INDEX RANGE SCAN          | XAK1ACCOUNT       |     1 |        |     4  (0) | 00:00:01 |
|  6 |     INDEX FAST FULL SCAN       | XPKCLIENT_ACCOUNT | 9479K |   108M |  1145  (5) | 00:00:13 |
|* 7 |    INDEX UNIQUE SCAN           | XPKCLIENT         |     1 |        |     1  (0) | 00:00:01 |
|  8 |   TABLE ACCESS BY INDEX ROWID  | CLIENT            |     1 |    17  |     2  (0) | 00:00:01 |

     0  recursive calls
     0  db block gets
 28696  consistent gets
     0  physical reads
     0  redo size
   623  bytes sent via SQL*Net to client
   524  bytes received via SQL*Net from client
     2  SQL*Net roundtrips to/from client
     0  sorts (memory)
     0  sorts (disk)
     1  rows processed

Note, particularly, that the two plans are the same apart from operation 6 where a full tablescan changes to an index fast full scan, predicting the same number of rows but with an increase of 50% in the cost; the increase in cost is matched by an increase in the reported workload – a 60% increase in the number of consistent reads and no disk reads or recursive SQL in either case. Yet the execution time (on multiple repeated executions) dropped by nearly 40%.

So what’s interesting and informative about the plan ?

The cost of a tablescan or an index fast full scan is easy to calculate; broadly speaking it’s “size of object” / “multiblock read count” * k, where k is some constant relating to the hardware capability. The costs in these plans and the autotrace statistics seem to be telling us that the index is bigger than the table, while the actual run times seem to be telling us that the index has to be smaller than the table.

It’s easy for an index to be bigger than its underlying table, of course; for example, if this table consisted of nothing but two short columns the index could easily be bigger (even after a rebuild) because it would be two short columns plus a rowid. If that were the case here, though, we would expect the time to fast full scan the index to be higher than the time to scan the table.

So two thoughts crossed my mind as I looked at operation 6:

  • Mixing block sizes in a database really messes up the optimizer costing, particularly for tablescans and index fast full scans. Maybe the table had been built in a tablespace using 32KB  blocks while the index had been built in a tablespace using the more common 8KB blocksize – I didn’t want to start working out the arithmetic but that might be just enough to produce the contradiction.
  • Maybe the table was both bigger AND smaller than the index – bigger because it held more data, smaller because it had been compressed. If so then the difference in run-time would be the overhead of decompressing the rows before projecting and comparing the data.

Conveniently the OP has included an extract from the 10053 trace:

Table Stats::
  Table: CLIENT_ACCOUNT  Alias:  D
    #Rows: 9479811  #Blks:  18110  AvgRowLen:  71.00  ChainCnt:  0.00
  Column (#1): CLNT_ID(
    AvgLen: 6 NDV: 1261035 Nulls: 0 Density: 0.000001 Min: 0 Max: 4244786
    Histogram: HtBal  #Bkts: 254  UncompBkts: 254  EndPtVals: 239
  Column (#2): ACCT_ID(
    AvgLen: 6 NDV: 9479811 Nulls: 0 Density: 0.000000 Min: 1 Max: 22028568
    Histogram: HtBal  #Bkts: 254  UncompBkts: 254  EndPtVals: 255

Index Stats::
  Index: XPKCLIENT_ACCOUNT  Col#: 1 2
    LVLS: 2  #LB: 28543  #DK: 9479811  LB/K: 1.00  DB/K: 1.00  CLUF: 1809449.00

Note that the index is called xpclient_account – which suggests “primary key” –  and the number of distinct keys in the index (#DK) matches the number of rows in the table(#Rows). The index and table stats seem to be consistent so we’re not looking at a problem of bad statistics.

Now to do some simple (ballpark) arithmetic: for the table can we check if  “rows * average row length / 8K =  blocks”. We can read the numbers directly from the trace file:  9,500,000 * 71 / 8,000 = 84,000.  It’s wrong by a factor of about 4 (so maybe it’s a 32K block, and maybe I could rule out that possibility by including more detail in the arithmetic – like allowing properly for the block header, row overheads, pctfree etc).

For the index – we believe it’s the primary key, so we know the number of rows in the index – it’s the same as the number of distinct keys. As for the length of an index entry, we have the index definition (col#: 1 2) and we happen to have the column stats about those columns so we know their average length. Allowing for the rowid and length bytes we can say that the average index entry is (6 +1) + (6 + 1) + 6 = 20 bytes.  So the number of leaf blocks should be roughy 9,500,000 * 20 / 8,000 = 23,750. That’s close enough given the reported 28,543 and the fact that I haven’t bothered to worry about row overheads, block overheads and pctfree.

The aritmetic provides an obvious guess – which turned out to be correct: the table is compressed, the index isn’t. The optimizer hasn’t allowed for the CPU cost of decompressing the compressed rows, so the time required to decompress 9.5M rows doesn’t appear in the execution plan.


Looking at the column stats, it looks like there are roughly 8 acct_ids for each clnt_id, so it would probably be sensible to compress the primary key index (clnt_id, acct_id) on the first column as this would probably reduce the size of the index by about 20%.

Better still – the client_account table has very short rows – it looks like a typical intersection table with a little extra data carried. Perhaps this is a table that should be an index-organized table with no overflow. It looks like there should also be an index (acct_id, clnt_id) on this table to optimse the path from account to client and this would become a secondary index – interestingly being one of those rare cases where the secondary index on an IOT might actually be a tiny bit smaller than the equivalent index on a heap table because (in recent versions of Oracle) primary key columns that are included in the secondary key are not repeated in the index structure. (It’s a little strange that this index doesn’t seem to exist already – you might have expected it to be there given the OP’s query, and given that it’s an “obvious” requirement as an index to protect the foreign key.)

The only argument against the IOT strategy is that the table clearly compresses very well as a heap table, so a compressed heap table plus two B-tree indexes might be more cost-effective than an IOT with a single secondary index.


August 5, 2015


Filed under: compression,Infrastructure,Oracle — Jonathan Lewis @ 1:06 pm BST Aug 5,2015

Originally published Jan 2013

Red Gate have asked me to write a few articles for their Oracle site, so I’ve sent them a short series on “traditional” compression in Oracle – which means I won’t be mentioning Exadata hybrid columnar compression (HCC a.k.a. EHCC). There will be five articles, published at the rate of one per week starting Tuesday (15th Jan). I’ll be supplying links for them as they are published.

Updated Aug 2015

Since I’ve got a little catalogue on compression started, I decided to add some items from my blog to the list, starting with a six-part series on HCC and compression units that I wrote (mostly) in the summer of 2012.

There are a few other items on my blog that I’ll add to this list eventually.

Updated Feb 2016

There’s a section on the official Oracle blog site – Database Storage Optimizationthat’s just become very active with a number of articles on compression in its many forms.

February 21, 2014

Index Compression – aargh

Filed under: Bugs,compression,Indexing,Infrastructure,Oracle — Jonathan Lewis @ 7:57 am BST Feb 21,2014

The problem with telling people that some feature of Oracle is a “good thing” is that some of those people will go ahead and use it; and if enough people use it some of them will discover a hitherto undiscovered defect. Almost inevitably the bug will turn out to be one of those “combinations” bugs that leaves you thinking: “Why the {insert preferred expression of disbelief here} should {feature X} have anything to do with {feature Y}”.

Here – based on index compression, as you may have guessed from the title – is one such bug. I got it first on, but it’s still there on and


November 6, 2013

12c In-memory

Filed under: 12c,compression,Indexing,Infrastructure,Oracle — Jonathan Lewis @ 6:53 pm BST Nov 6,2013

I wrote a note about the 12c “In-Memory” option some time ago on the OTN Database forum and thought I’d posted a link to it from the blog. If I have I can’t find it now so, to avoid losing it, here’s a copy of the comments I made:


September 11, 2013

MV Refresh

Filed under: compression,Infrastructure,Materialized view,Oracle,Partitioning,Performance — Jonathan Lewis @ 8:47 pm BST Sep 11,2013

I have a fairly strong preference for choosing simple solutions over complex solutions, and using Oracle-supplied packages over writing custom code – provided the difference in cost (whether that’s in human effort, run-time resources or licence fees) is acceptable. Sometimes, though, the gap between simplicity and cost is so extreme that a hand-crafted solution is clearly the better choice. Here’s an idea prompted by a recent visit to a site that makes use of materialized views and also happens to be licensed for the partitioning option.


June 19, 2013

Wasted Space

Filed under: compression,fragmentation,Infrastructure,LOBs,Oracle — Jonathan Lewis @ 9:55 am BST Jun 19,2013

Here’s a little quiz: If I take the average row length of the rows in a table, multiply by the number of rows, and convert the result to the equivalent number of blocks, how can the total volume of data in the table be greater than the total number of blocks below the table high water mark ? I’ve got three tables in a schema, and they’re all in the same (8KB block, 1M uniform extent, locally managed) tablespace, but here’s a query, with results, showing their space utilisation – notice that I gather schema stats immediately before running my query:


The Rubric Theme. Blog at


Get every new post delivered to your Inbox.

Join 6,211 other followers