
Copyright Information:

This document is a copy of a thread from the OTN database forum. Copyright lies with Oracle Corporation and this

copy is published with their permission.

Some of the information in this document is copyright by other individuals but, under the terms of use of OTN anyone

who chooses to publish information on OTN for which they hold the copyright grants Oracle Corporation a free, non-

exclusive, licence to republish or distribute that information in any way they see fit so, under the terms of the licence, if

Oracle Corporation grants me permission to publish the thread the copyright holder cannot claim breach of copyright.

(But see note below.)

Purpose of publication

When the OTN forum software was upgraded some time around September 2008 there were some performance

problems related to threads with very long messages, so these threads were archived out of the public system. (See

thread: http://forums.oracle.com/forums/message.jspa?messageID=2780056#2780056) Since I had already published

an item on my blog that linked to several points in one such thread to highlight a few interesting topics I asked if I

could publish a copy of the thread on my blog so that I could at least change the URLs in my article to page pointers in

the copy.

The driving blog article is at http://jonathanlewis.wordpress.com/2008/07/19/block-sizes/ and this pdf file should be

read in conjunction with that article. If you decide to link to the document, please do so indirectly by linking to the blog

article as this will ensure that your link will still work in the future. If you link directly to the document your link will

stop working if I update the document. (This is a feature of how Wordpress.com handles document uploads).

Despite my comment regarding copyright and the licence you granted to Oracle Corporation, if you quoted something

from one of your copyrighted websites in the original thread but would like to have it removed from this document,

please let me know either by email at jonathan@jlcomp.demon.co.uk or by adding a comment to the blog article – with

a precise description of the material you would like removed, and the link showing the prior publication of the material.

If your submission was not relevant to any of the topics that my blog was highlighting, or even if it was relevant but

didn’t add any significant value, I will remove the text – it may take a few days, though, depending on my timetable.

If another user has replied by quoting and commenting usefully on the text that you submitted then I may invoke the

general rule of “fair use” and the terms of the licence you granted to Oracle Corporation when considering their

contribution to the thread.

In response to a request from Burleson Consulting I have deleted two entries that contained material that Don Burleson

had quoted from one of the Burleson Consulting websites. Following a subsequent request from Janet Burleson I have

also deleted all the other comments made by Don Burleson and all occurrences of his name. The material deleted was

not relevant to any of the topics I was highlighting in my blog note.

user619401

Posts: 36

Registered: 2/10/08

Larger vs. Small data block

Posted: Jun 2, 2008 3:31 PM Reply

Hi guys,

Why does Oracle Adminstration 10g self-study CD rom says that a database that supports data warehousing application may

perform better with a larger data block and a database that supports transactional application may perform better with a

smaller data block? What's the difference btwn. data warehousing and transactional application? And what does big or small

data block do to them?

Many thanks,

Daniel

mpowel01

Posts: 2,840

Registered: 12/8/98

Re: Larger vs. Small data block

Posted: Jun 2, 2008 4:32 PM in response to: user619401
Reply

An OLTP database instance would have a large percentage of its SQL consist of single and small row select and update

statements for which the data likely be retrieved by key. Lots of small transactions in other words.

A warehouse on the other hand will have heavy full table access to calculate summary amounts and will likely support large

data loads. Update transactions are unlikely to compete with concurrent updaters.

HTH -- Mark D Powell --

Re: Larger vs. Small data block

Posted: Jun 2, 2008 7:28 PM in response to: user619401
Reply

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 2, 2008 8:36 PM in response to: user619401
Reply

I'm not sure what you are reading or what others are advising but a simple statement by Bryn Llewellyn (PL/SQL Product

Manager, Database and Application Server Technologies Development Group, at Oracle Corporation Headquarters) should clarify it

all.

The correct answer for blocks size is 8K because that is the ONLY size Oracle tests.

If you implement any block size other than 8K your benefits, if any, will be marginal and your risks greater. Jonathan Lewis

has published a bit on the subject and given that he tests before commenting, unlike others in our industry, you should read

his comments.

In my lab nothing we have seen with larger block sizes, except in special contrived situations has been worth the cost of a

latte' at Starbucks.

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 2, 2008 9:21 PM in response to: damorgan
Reply

damorgan,

Greg Rahn, Richard Foote, as well as you contributed to this thread related to block size recommendations:

http://forums.oracle.com/forums/thread.jspa?messageID=2445936�

To avoid repeating history, the OP might find the above thread interesting.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Amardeep

Sidhu

Posts: 900

From: amardeepsidhu.com

Registered: 10/27/06

Re: Larger vs. Small data block

Posted: Jun 2, 2008 10:07 PM in response to:
Reply

Hmmmm....

That poor guy just asked about the basics. How using small and large block size affects the performance in OLTP & Data

warehousing environments. This whole stuff might be too heavy :(

Amardeep Sidhu

Madrid

Posts: 7,145

From: Mexico City

Registered: 3/8/99

Re: Larger vs. Small data block

Posted: Jun 2, 2008 10:17 PM in response to: damorgan
Reply

> The correct answer for blocks size is 8K because that

> is the ONLY size Oracle tests.

>

So if 8K blocks is the only correct answer for block size, why Oracle has created the multple-size block buffers? And even it

provides Pros/Cons of different block sizes in metalink:

Notes on Choosing an Optimal DB BLOCK SIZE

Doc ID: Note:46757.1

~ Madrid

http://hrivera99.blogspot.com/

Madrid

Posts: 7,145

From: Mexico City

Registered: 3/8/99

Re: Larger vs. Small data block

Posted: Jun 2, 2008 10:19 PM in response to: Amardeep Sidhu
Reply

It all depend on who is reading now and in the future this thread.

~ Madrid

http://hrivera99.blogspot.com/

Amardeep

Sidhu

Posts: 900

From: amardeepsidhu.com

Registered: 10/27/06

Re: Larger vs. Small data block

Posted: Jun 2, 2008 10:30 PM in response to: Madrid
Reply

Hmmm....i am not getting you here properly.

But what OP wanted, Mark gave a perfect answer for that :)

Amardeep Sidhu

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 2, 2008 10:43 PM in response to: Charles Hooper
Reply

Good grief. This thread has been around so long I wrote the same thing in it before.

I truly find it unfathomable that bad advice, such as rebuilding indexes, changing block sizes, etc. gets such wide currency

when there is not a single shred of published evidence that, in real-world production applications, they have value.

I guess the fact that spam exists proves the world is full of gullible people.

And snake oil salesmen willing to take advantage of their ignorance.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 2, 2008 10:45 PM in response to: Madrid
Reply

So that it is possible to use Transportable Tablespaces to move data from a database with one block size to another.

Based on Oracle's very reasonable addition of a feature some people just went off the deep end inventing possible uses for

this ... not one of which has ever survived a real-world test. And, of course, we have a small group of people who believe

that shouting loudly and waving your hands substitutes for metrics. Thus the mythology continues.

Madrid

Posts: 7,145

From: Mexico City

Registered: 3/8/99

Re: Larger vs. Small data block

Posted: Jun 2, 2008 11:01 PM in response to: damorgan
Reply

Well, actually I am talking about the above referred metalink note 46757.1 which is a white paper published by Oracle. Is this

metalink note a myth?

~ Madrid

http://hrivera99.blogspot.com/

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 2, 2008 11:13 PM in response to: Madrid
Reply

I am familiar with that note and with apologies to the author for my suspicion, I don't believe it to be the result of testing

but rather just a marketing piece.

I've never met anyone from Oracle's tuning team that supported it. I've never met any Oak Table network member that supported

it. I've never met an Oracle Ace that supported it. And the testing in my lab indicates that except for highly contrived

situations it is, at best, a marginal influence.

Further, the note was posted 4 years ago and has never once been updated. It was written for 9i and no one has ever written

anything like it for 10.1, 10.2, or 11.1.

We should always keep in mind that Oracle has also published as "fact" things we know today to have never been true such as

all of the nonsense about separating tables and indexes into different tablespaces and all of the nonsense about controlling

the number of extents.

If the author wishes to put up the test environment information and the test results I would be happy to reconsider my

opinion. But based on my own work, and that of others I respect, I think the note is misleading and should be removed.

Madrid

Posts: 7,145

From: Mexico City

Registered: 3/8/99

Re: Larger vs. Small data block

Posted: Jun 3, 2008 12:11 AM in response to: damorgan
Reply

Metalink notes are official Oracle statements, so they are considered the ultimate truth reference that overrules any ACE's,

researcher's or whoever criteria. Just for the sake of truth, and based on your lab tests, would you mind making an official

request with the metalink team for this note to be either removed or updated?

~ Madrid

http://hrivera99.blogspot.com/

Mohan

Nair

Posts: 612

Registered: 7/14/00

Re: Larger vs. Small data block

Posted: Jun 3, 2008 4:29 AM in response to: user619401
Reply

See this link

http://www.myoracleguide.com/s/MultipleBlocksizes.htm

chris_c

Posts: 160

Registered: 10/17/06

Re: Larger vs. Small data block

Posted: Jun 3, 2008 4:53 AM in response to: damorgan
Reply

>> The correct answer for blocks size is 8K because that is the ONLY size Oracle tests.

do you have a link to a quote on this? Its a fairly broad statement I doubt oracle performs no testing at all on other block

sizes, 8k may be tested first/more but it would be nice to see the actuall statements on this one.

Chris

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 3, 2008 5:08 AM in response to: chris_c
Reply

Over coffee with Bryn in the 300 building earlier this year. It would have been improper to bring along a tape recorder. <g>

But feel free to put the question to him yourself if you wish.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 3, 2008 5:12 AM in response to: Madrid
Reply

I understand the point you are making but I must disagree.

The fact that metalink notes are official statements does not make them correct. If you don't believe me I suggest you try to

install a number of Oracle technologies using them. I can provide you with a list ... a very long list.

The fact is that, just dealing with Physical Data Guard for 10.2.x you can find at least three sets of instructions there that

are mutually incompatible. And not one of them is, by itself, correct.

But taking even the most optimistic view of the note you referenced ... it was written for a version that is no longer fully

supported and never once demonstrates a difference in timing based on end-user experience which is the only timing that

matters.

Re: Larger vs. Small data block

Posted: Jun 3, 2008 7:43 AM in response to: Amardeep Sidhu
Reply

Re: Larger vs. Small data block

Posted: Jun 3, 2008 7:50 AM in response to: damorgan
Reply

Richard

Foote

Posts: 278

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 3, 2008 9:04 AM in response to:
Reply

Note: it doesn't matter how often one says something, it doesn't make it any more accurate or any less misleading ...

In this one post you quote from UNISYS:

"indexes (with small index entries) that are predominantly accessed via a matching key may benefit from a smaller

DB_BLOCK_SIZE."

and then from the infamous metalink note you quote:

"Indexes like big blocks because index height can be lower and more space exists within the index branch nodes."

Ummm, consistent as always ;)

Cheers

Richard Foote

http://richardfoote.wordpress.com/

Richard

Foote

Posts: 278

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 3, 2008 9:19 AM in response to: Madrid
Reply

> Metalink notes are official Oracle statements, so

> they are considered the ultimate truth reference that

> overrules any ACE's, researcher's or whoever

> criteria. Just for the sake of truth, and based on

> your lab tests, would you mind making an official

> request with the metalink team for this note to be

> either removed or updated?

>

Hi Madrid

I worked for Oracle Corporation for a number of years from the mid 1990's. Guess what. Despite some rumors to the contrary,

most people who work for Oracle are just ordinary, everyday folk like you and me. They generally don't have any special powers

or abilities, surprisingly perhaps, they generally have access to little or no additional documentation or information that

isn't generally available, they can make mistakes and incorrect assumptions on how things work and often look to people such a

Jonathan Lewis or a Steve Adams for insights and information.

In short, you could possibly have a much experience and insight into Oracle as many of those who write some of these metalink

notes.

It would be nice to think that official Oracle statements and documentation would be error free and totally 100% accurate.

Unfortunately, the real-world and Oracle specifically isn't like that. Although on the whole, information you get from Oracle

is pretty damn good, it has mistakes and errors just like any other source of information.

Cheers

Richard Foote

http://richardfoote.wordpress.com/

Richard

Foote

Posts: 278

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 3, 2008 9:31 AM in response to:
Reply

Don't confuse the issue of deciding an appropriate database block size with that of having multiple block sizes within the

same database ...

Again, for the umpteenth time, let me make the point that your general advise that one of the first things an experienced DBA

should do is move all indexes into a larger block size and that indexes always favour large blocks contradicts entirely with

what you have just quoted from metalink:

"Large block size is not good for index blocks used in an OLTP type environment, because they increase block contention on the

index leaf blocks"

You can't keep having it both ways. You can't suggest one minute that the first thing one should do is rebuild indexes into a

bigger block size because indexes always favour them and then provide quotes that directly and totally contradicts such

advice.

It's not just beginners you are totally confusing :(

Cheers

Richard Foote

http://richardfoote.wordpress.com/

Billy

Verreynne

Posts: 6,628

Registered: 5/27/99

Re: Larger vs. Small data block

Posted: Jun 3, 2008 10:14 AM in response to: Richard Foote
Reply

> It would be nice to think that official Oracle statements and documentation would be

> error free and totally 100% accurate. Unfortunately, the real-world and Oracle specifically

> isn't like that.

Can attest to that. Some years ago had a nasty I/O problem at kernel driver level that reported data corruption. Fortunately

the actual data written to SAN was not corrupted.

Took me a few days and replicating the environment on another smaller platform and testing each and every layer in turn to

find the problem. Oracle Support tried to help in a fashion, but without the right h/w and s/w combinations...

Turned out to be a multi I/O path issue dealing with ASMlib and certain vendor s/w - that according to a very specific

Metalink note I've consulted prior to installation, should not have been any problem at all.

I requested (in my SR) that the Metalink note to be corrected, or at least contain a reference that what the note stated was

incorrect for certain s/w combinations... nothing happened.

So yeah.. one needs to be very wary simply to treat a Metalink note as gospel.

mpowel01

Posts: 2,840

Registered: 12/8/98

Re: Larger vs. Small data block

Posted: Jun 3, 2008 10:22 AM in response to: Madrid
Reply

Madrid, metalink notes vary in quality. Many of the notes contain factual misstatements or have been superceded by newer notes

but not removed from the system. If the information is important you should always attempt to verify it through testing and

additional documentation research.

The above statement is in general and is not a comment on the validity of the note you referenced earlier. Just do not think

that because you find it in a metalink note that the contents are automatically correct. Obsolete information and errors are

not uncommon.

HTH -- Mark D Powell --

Madrid

Posts: 7,145

From: Mexico City

Registered: 3/8/99

Re: Larger vs. Small data block

Posted: Jun 3, 2008 3:49 PM in response to: damorgan
Reply

Daniel,

I don't agree nor disagree, I am just looking for the truth. You said you have some lab tests, If you don't mind I would like

to take a look at your research results. Have you published them in internet? Are they available?

Regards.

Madrid

Posts: 7,145

From: Mexico City

Registered: 3/8/99

Re: Larger vs. Small data block

Posted: Jun 3, 2008 3:59 PM in response to: Billy Verreynne
Reply

> So yeah.. one needs to be very wary simply to treat a

> Metalink note as gospel.

IMO Metalink notes should be treated seriously, and in case someone has factual scientific evidence a note is wrong then that

someone must report it to the Metalink team along with the research results. I don't think Oracle is willing to publish lies.

And if metalink doesn't have any credibility at all, what's left, Search The Web? Forums?, Friends? Crystal balls?

~ Madrid

http://hrivera99.blogspot.com/

Amit_DBA

Posts: 503

From: Bangalore, India

Registered: 2/2/05

Re: Larger vs. Small data block

Posted: Jun 3, 2008 4:07 PM in response to: Madrid
Reply

Atleast Metalink articles with RAV status should be verified before they are followed. This warning also comes in the Note

header.

Secondly as Richard Foote has clearly mentioned that there is no special documentation which is available to oracle people

(except for unpublished bugs)

They are Notes terming good and bad tips. But if you find people like Jonathan Lewis or Richard Foote proving them wrong with

Real examples , then I believe we should acknowledge it.

-Amit

http://askoracledba.wordpress.com

Madrid

Posts: 7,145

From: Mexico City

Registered: 3/8/99

Re: Larger vs. Small data block

Posted: Jun 3, 2008 4:18 PM in response to: Amit_DBA
Reply

I am perfectly aware of the RAV kind of notes, in fact I have provided Metalink with feedback when I have found the documents

have inaccurate statements. But what about those notes which are already official. We cannot consider Metalink as unofficial,

otherwise metalink would end up considered as a Grimorium Verum.

~ Madrid

http://hrivera99.blogspot.com/

Re: Larger vs. Small data block

Posted: Jun 3, 2008 5:18 PM in response to: Amit_DBA
Reply

Re: Larger vs. Small data block

Posted: Jun 3, 2008 5:23 PM in response to: Amit_DBA
Reply

sybrandb

Posts: 4,036

From: Amsterdam, Netherlands

Registered: 8/4/98

Re: Larger vs. Small data block

Posted: Jun 3, 2008 5:27 PM in response to: Madrid
Reply

I have reported several errors in the past in notes you consider to be 'official' ie non-RAV.

Please also acknowledge many Metalink Notes are about 10 years old.

As Tom Kyte always says 'Always question authority'

--

Sybrand Bakker

Senior Oracle DBA

sybrandb

Posts: 4,036

From: Amsterdam, Netherlands

Registered: 8/4/98

Re: Larger vs. Small data block

Posted: Jun 3, 2008 5:29 PM in response to:
Reply

I'm quite positive the only source of information for OTN support people is Metalink.

I almost never get responses to SRs which go beyond Metalink.

If I need such a response the SR is assigned to development.

--

Sybrand Bakker

Senior Oracle DBA

Amit_DBA

Posts: 503

From: Bangalore, India

Registered: 2/2/05

Re: Larger vs. Small data block

Posted: Jun 3, 2008 5:32 PM in response to:
Reply

I believe these are only for tips and tricks for resolving corruption issues or undocumented features..and not on Performance

Test Results..

Anyways I Do agree that Metalink is THE place to get the right information. At the same time for some issues, we cant depend

on it fully.

Didn't Oracle docs said that ASM balances Hot spots..But if you check book on ASM (Oracle press by Nitin Vengurekar,Murali...

) it says it is a Myth.

-Amit

http://askoracledba.wordpress.com

Re: Larger vs. Small data block

Posted: Jun 3, 2008 5:35 PM in response to: sybrandb
Reply

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 3, 2008 5:51 PM in response to: damorgan
Reply

<PRE>

I created two basic identical databases on same server with same configuration, except db_block_size and

db_file_multiblock_read_count. You can see the result below.

SQL> select * from v$version

2 /

BANNER

--

Oracle Database 10g Enterprise Edition Release 10.2.0.4.0 - Prod

PL/SQL Release 10.2.0.4.0 - Production

CORE 10.2.0.4.0 Production

TNS for 32-bit Windows: Version 10.2.0.4.0 - Production

NLSRTL Version 10.2.0.4.0 - Production

SQL> select name from v$database

2 /

NAME

DWDB

SQL> Select Name, Value

2 From v$parameter

3 Where Name In ('db_block_size', 'db_file_multiblock_read_count')

4 /

NAME VALUE

-- ------

db_block_size 16384

db_file_multiblock_read_count 32

SQL> Explain Plan For

2 Select count(1)

3 From employee emp, department dept

4 Where emp.dept_code = dept.dept_code

5 /

Explained.

SQL> Select plan_table_output

2 From Table (Dbms_xplan.display ())

3 /

PLAN_TABLE_OUTPUT

--

Plan hash value: 1228034791

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 26 | | 15748 (2)| 00:03:41 |

| 1 | SORT AGGREGATE | | 1 | 26 | | | |

|* 2 | HASH JOIN | | 5472K| 135M| 130M| 15748 (2)| 00:03:41 |

| 3 | INDEX FAST FULL SCAN| DEPARTMENT_ID01 | 5472K| 67M| | 1814 (2)| 00:00:26 |

| 4 | INDEX FAST FULL SCAN| EMPLOYEE_ID01 | 6331K| 78M| | 1814 (2)| 00:00:26 |

--

PLAN_TABLE_OUTPUT

--

Predicate Information (identified by operation id):

2 - access("EMP"."DEPT_CODE"="DEPT"."DEPT_CODE")

Note

- dynamic sampling used for this statement

20 rows selected.

SQL> Exit;

**

SQL> select * from v$version

2 /

BANNER

--

Oracle Database 10g Enterprise Edition Release 10.2.0.4.0 - Prod

PL/SQL Release 10.2.0.4.0 - Production

CORE 10.2.0.4.0 Production

TNS for 32-bit Windows: Version 10.2.0.4.0 - Production

NLSRTL Version 10.2.0.4.0 - Production

SQL> select name from v$database

2 /

NAME

TPDB

SQL> Select Name, Value

2 From v$parameter

3 Where Name In ('db_block_size', 'db_file_multiblock_read_count')

4 /

NAME VALUE

-- -----

db_block_size 8192

db_file_multiblock_read_count 8

SQL> Explain Plan For

2 Select count(1)

3 From employee emp, department dept

4 Where emp.dept_code = dept.dept_code

5 /

Explained.

SQL> Select plan_table_output

2 From Table (Dbms_xplan.display ())

3 /

PLAN_TABLE_OUTPUT

Plan hash value: 1228034791

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 26 | | 19319 (2)| 00:03:52 |

| 1 | SORT AGGREGATE | | 1 | 26 | | | |

|* 2 | HASH JOIN | | 5293K| 131M| 126M| 19319 (2)| 00:03:52 |

| 3 | INDEX FAST FULL SCAN| DEPARTMENT_ID01 | 5293K| 65M| | 3226 (2)| 00:00:39 |

| 4 | INDEX FAST FULL SCAN| EMPLOYEE_ID01 | 5475K| 67M| | 3226 (2)| 00:00:39 |

--

PLAN_TABLE_OUTPUT

Predicate Information (identified by operation id):

2 - access("EMP"."DEPT_CODE"="DEPT"."DEPT_CODE")

Note

- dynamic sampling used for this statement

20 rows selected.

SQL> Exit

===

You can clearly see the database TPDB with 8k blocksize took 10% more CPU time than DWDB with 16k blocksize.

Mr.damorgan, Can you explain for this 10% cost difference.

</PRE>

Madrid

Posts: 7,145

From: Mexico City

Registered: 3/8/99

Re: Larger vs. Small data block

Posted: Jun 3, 2008 6:19 PM in response to: sybrandb
Reply

> I have reported several errors in the past in notes

> you consider to be 'official' ie non-RAV.

great for you, that is what it is all about. I did say if someone has evidence the note is false or missleading then it MUST

be reported to the meatalink team, so it maintains its credibility. I have also reported notes which I have found to have

mistakes.

> As Tom Kyte always says 'Always question authority'

That's right, you have to question, from the research point of view. Now what happens from the practical point of view in a

day by day dba work?. Let's assume you are in a consulting service, or just a professional who works for a company and wants

to resolve some issue, who would you give more credibility when the business availability depends on the information you

gather, Metalink or a google search? Do you think there will be enough time to 'Question Authority' in this case?

~ Madrid

http://hrivera99.blogspot.com/

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 3, 2008 6:34 PM in response to: sp009
Reply

Database DWDB:

> db_block_size 16384

> db_file_multiblock_read_count 32

Cost of 2 tablescans and hash join is 15748, Time 3:41

Database TPDB

> db_block_size 8192

> db_file_multiblock_read_count 8

>

Cost of 2 tablescans and hash join is 19319, Time 3:52

>

> You can clearly see the database TPDB with 8k blocksize took 10% more

> CPU time than DWDB with 16k blocksize.

>

Neither database took any time to run the query - what you're looking at is execution plan which is the predicted cost and

time to run.

Secondly, the 3:41 vs. 3:52 is the predicted elapsed time to run, how are you turning an 11 second difference in elapsed time

into a 10% difference in CPU time ?

Thirdly, given you've told Oracle that it's allowed to read 32 blocks in a single read request for the 16K block size (for a

total of 512K) why should you be surprised if the predicted runtime is longer when you tell Oracle that it can only read 8

blocks of 8Kb (for a total of 64K) in a single read request.

Fourth, most of the time shown relates to the temp space I/O due to a predicted hash join spill to disc. Unfortunately the

variation in the time for the hash join line is affected by the difference in estimates of the sizes of the inputs: the temp

space size for the larger block size is 4M (3%) bigger, but the time due to that line is 2:49 compared to the 2:34 (9% less)

for the smaller block size. So nothing conclusive from that line - which happens to be the largest contributor to the

predicted elapsed time.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Re: Larger vs. Small data block

Posted: Jun 3, 2008 7:34 PM in response to: Jonathan Lewis
Reply

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 3, 2008 9:20 PM in response to: Jonathan Lewis
Reply

Mr. Jonathan,

I am not arguing with you since you are far more knowledgeable than me. I oversee a medium size Oracle Shop and i can see that

after switching to block size 16 and read count 32 (i got the opportunity to test first using our production data during

server upgrade) , me and my DB users can see noticeable performance gain in our DW application. OK, the case may be different

for Oracle Shop with Servers hosting different applications other than Oracle and with limited resources. The 10% difference i

mentioned in above case is 15748 Vs 19319. As far as i know, there are hundreds of like queries executing in our DW DB in

every 30 minutes. That make a noticeable performance difference in overall for 8K Vs 16K

Regards,

sp009

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 3, 2008 9:41 PM in response to: sp009
Reply

That the query is faster is not being questions. What is at issue is that you are drawing an unsupported inference.

The point I think Jonathan is making is that your test case does not prove what you are claiming it does. 16x32 <> 8x8. You

have no evidence that the relevant factor was the block size and not the change in multi-block reads or any one of a number of

other possible factors.

The lab test should look like this:

Test 1: Run test using 8K blocks.

Test 2: Run the exact same test changing NOTHING other than the block size.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 3, 2008 9:43 PM in response to:
Reply

The most relevant portion of Jonathan's post was this short paragraph:

"... that it's allowed to read 32 blocks in a single read request for the 16K block size (for a total of 512K) why should you

be surprised if the predicted runtime is longer when you tell Oracle that it can only read 8 blocks of 8Kb (for a total of

64K) in a single read request."

Is there some reason you don't attempt to address the obvious difference that renders the "test case" meaningless? Or is it

your opinion that 512K = 64K? <g>

Hemant

K

Chitale

Posts: 1,259

Registered: 11/6/98

Re: Larger vs. Small data block

Posted: Jun 3, 2008 10:08 PM in response to: sp009
Reply

Your 16K block database has an mbrc of 32 but the 8K block database

has an mbrc of 8 only.

The Index Fast Full Scan does a multiblock read which in your 16K database

is 512KB but is only 64KB in the 8K dadtabase. Oracle realises that it will

have to issue more read calls to the OS, taking more time to do, in the 8K

database.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 3, 2008 10:20 PM in response to: Hemant K Chitale
Reply

Exactly. That some here are capable of tuning it out is truly amazing.

I am copying parts of this thread onto slides for my class at the university next year. There is a lot to be learned from

observing people that don't or can't.

Billy

Verreynne

Posts: 6,628

Registered: 5/27/99

Re: Larger vs. Small data block

Posted: Jun 4, 2008 1:16 AM in response to: Madrid
Reply

> I don't think Oracle is willing to publish lies

You are misconstruing what some of us are saying. Metalink articles are correct.. but only correct as far as their context -

such as the Oracle version (and patchset) they refer to.

Even then, other factors like o/s version, h/w and so on can have an impact on the accuracy of that note.

Over time, these notes can get out of date. Oracle is always introducing core changes in the RDBMS kernel (never mind all the

other new features) as the technologies evolves and matures. The product is not stagnant. Expecting Metalink notes to always

be 100% correct and 100% applicable, is a very unrealistic expectation.

This is not "Oracle publishing lies". No-one has said that here - or even implied it. What has been said is that one should

not treat Metalink articles as the sole and only truth.

> And if metalink doesn't have any credibility at all, what's left, Search The Web? Forums?, ..

Again, no-one has said that Metalink has no credibility. It is a resource. Like searching the web, consulting forums and so

on.

>.. Friends? Crystal balls?

You mean like having this some person starting a forum posting "Dear Oracle Friends" as if we are all part of a brotherhood of

the Oracle Religion? I broke my crystal ball on such a person's head, so I'm out of crystal balls.

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 4, 2008 2:02 AM in response to: damorgan
Reply

> That the query is faster is not being questioned.

>

The speed of the query is not available for questioning - as far as the post from sp009 goes the query has not been run, so

there are no figures whatsoever about the actual speed of the query. All we have seen is that if you change the input

statistics and optimizer parameters for a query the execution plan costs can change.

> The lab test should look like this:

> Test 1: Run test using 8K blocks.

> Test 2: Run the exact same test changing NOTHING other than the block size.

Test 2 should change the db_file_multiblock_read_count size so that the product of block_size and

db_file_multiblock_read_count does not change from the value in Test 1.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Hemant

K

Chitale

Posts: 1,259

Registered: 11/6/98

Re: Larger vs. Small data block

Posted: Jun 4, 2008 2:33 AM in response to: Billy Verreynne
Reply

>>I broke my crystal ball on such a person's head, so I'm out of crystal balls.

Sometimes, I am tempted to stop replying to any questions on this forum.

(I never had a crystal ball to begin with, you see).

Richard

Foote

Posts: 278

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 4, 2008 6:04 AM in response to: sp009
Reply

Hi sp009

Some advice.

If you're going to compare benchmarks, make sure you actually execute the associated statements, not just get an explain plan.

Learn the difference between determining the actual cpu used by differing statements vs. the cpu the CBO thinks it might use,

as they may or may not be totally and completely different.

If you're going to claim 10% cpu time differences, then make sure you actually quote correct figures (15748 vs 19319 are not

"cpu times") .

If you're going to claim a 10% difference, then make sure your arithmetic is correct (15748 vs 19319 is not a 10% difference).

Note that 2 databases on the same server are not going to necessarily be identical. For example, the associated data files,

log files might live on faster disks or on faster parts of the disks, the server may be at differing loads at differing times

etc.

Note that running a SQL statement (when you actually get around to running it of course) that uses a multiblock read execution

plan but compares a 512K max read vs. a 64K max read is not the same thing, not even close really.

You've unfortunately made the classic mistake of changing 2 things (block size and MBRC) and assuming the net change is the

result of just one of those changes (block size) when in actual fact the other change (the overall MBRC) is likely to have a

greater impact.

A golden rule. If you don't compare an apple with an apple but instead compare an apple with an orange, you can't really

complain too much if the orange isn't crunchy enough for you :)

Thank you very much for your contribution, it's an excellent lesson/warning for us all ...

Cheers

Richard Foote

http://richardfoote.wordpress.com/

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 4, 2008 6:07 AM in response to: Jonathan Lewis
Reply

> > That the query is faster is not being questioned.

> >

> The speed of the query is not available for

> questioning - as far as the post from sp009 goes the

> query has not been run, so there are no figures

> whatsoever about the actual speed of the query. All

> we have seen is that if you change the input

> statistics and optimizer parameters for a query the

> execution plan costs can change.

>

> Test 2 should change the

> db_file_multiblock_read_count size so that the

> product of block_size and

> db_file_multiblock_read_count does not change from

> the value in Test 1.

Jonathan,

I am probably forgetting something here, but as sp009's explain plan on Oracle 10.2.0.4 only shows the estimated time for data

retrieval, would not the values in sys.aux_stats$ be more relevant to the estimated time for data retrieval than

db_file_multiblock_read_count? I thought that on Oracle 10.2 CPU costing values would be used for estimated time, while

db_file_multiblock_read_count will be used for actual data retrieval times.

References:

http://www.oracle.com/technology/pub/articles/lewis_cbo.html

http://jonathanlewis.wordpress.com/2007/05/20/system-stats-strategy/

http://www.jlcomp.demon.co.uk/system_stats.html

sp009's experiment, while more thorough and complete than others, did not report all information necessary to build a test

case (as has already been stated a couple times in this thread). I would have liked to see the DBMS_XPLAN output for the query

with ALL STATS LAST specified, a list of all initialization parameters, and the values in sys.aux_stats$. It might also have

been nice to see a 10046 trace to see if the effects of block buffer caching, file system caching, or read-ahead optimization

had any impact on actual execution performance.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Hemant

K

Chitale

Posts: 1,259

Registered: 11/6/98

Re: Larger vs. Small data block

Posted: Jun 4, 2008 6:12 AM in response to: Charles Hooper
Reply

>> I thought that on Oracle 10.2 CPU costing values would be used for estimated time, while db_file_multiblock_read_count will

be used for actual data retrieval times.

Good reminder.

I believe that would be the case if System Statistics have been gathered

(SYS.AUX_STATS$ is populated). But, I can't be sure

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 4, 2008 6:18 AM in response to: Charles Hooper
Reply

Hi Charles

If the DFMBRC is specified, it will still limit the max size of a multiblock read with 10g and system stats. The CBO will use

the system stats in determining the cost, but Oracle will still use the DFMBRC to limit the size of the actual associated

I/Os.

System stats are yet another thing that can differ between the 2 databases, assuming of course they've been collected. And I

also agree that the information you've specified is somewhat important to determine what may or may differ between the 2

databases.

Cheers

Richard Foote

http://richardfoote.wordpress.com/

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 4, 2008 7:02 AM in response to: Richard Foote
Reply

If the DFMBRC is specified, it will still limit the max size of a multiblock read with 10g and system stats. The CBO will use

the system stats in determining the cost, but Oracle will still use the DFMBRC to limit the size of the actual associated

I/Os.

Hi Richard,

Thanks for the reply. What you stated above seems to confirm what I was attempting to imply in my previous post (I did not

word my previous reply as well as I would have liked). As sp009's test case reported cost and estimated time (and not actual

time), it would appear that the different values of DFMBRC did not further decrease the accuracy of the test case.

Perhaps the test case posted by sp009' should have stated "with a larger default block size, the calculated estimated cost

for executing a query is different if ...".

Is it possible, given what damorgan has stated in this thread, that Oracle does not consistently calculate a query's

estimated cost across changes in the default database block size (if that is the only change)?:

"The correct answer for blocks size is 8K because that is the ONLY size Oracle tests."

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Removed extra word in the last sentence.

Message was edited by:

Charles Hooper

Re: Larger vs. Small data block

Posted: Jun 4, 2008 8:14 AM in response to: Jonathan Lewis
Reply

cd

Posts: 4,585

From: Vienna, Austria

Registered: 9/8/98

Re: Larger vs. Small data block

Posted: Jun 4, 2008 9:07 AM in response to:
Reply

Quit whining. As long as you hide your expertise behind locked down live production sites, you'll always be second. Get used

to it.

C.

Message was edited by:

cd

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 4, 2008 9:57 AM in response to: Charles Hooper
Reply

Hi Charles

I'm not sure I would call sp009's post a "test case" as such as it doesn't really test anything other than listing a couple

of execution plans.

I'm not entirely sure what Daniel meant by his comment. A database with a larger block size will have costs relative to the

block size. With the cpu cost model , the cost can basically be summarised as No. of single block reads x single block read

time plus No. of multiblock reads x multiblock read time plus cpu cycles/cpu cycles per second all divided by the single

block read time.

So on the multiblock part of the costings, by having a larger MBRC, you potentially decrease the number of MBR operations but

increase the associated read times (MREADTIM).

If you have multi sized blocks in a database, things get a little confusing for the CBO with regard to the single block read

costs as you can vary the number of single block reads but the SREADTIM becomes an averaged figure between all the

blocksizes. Can't say I tested the possible consequences here ? Multiblock reads aren't such a problem as they get treated

the same regardless of the block size.

Yet another reason perhaps to avoid multi sized blocks in a database if there weren't enough already.

Cheers

Richard Foote

http://richardfoote.wordpress.com/

Re: Larger vs. Small data block

Posted: Jun 4, 2008 9:58 AM in response to: cd
Reply

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 4, 2008 10:05 AM in response to:
Reply

For someone who makes a nice living because of the short comings of Metalink and the documentation, you sure appear to run to

them for verification and confirmation of your little theories at every possible opportunity.

Not sure who is the more dependant on one than the other ...

Cheers

Richard Foote

http://richardfoote.wordpress.com/

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 4, 2008 11:06 AM in response to: damorgan
Reply

> That the query is faster is not being questions. What

> is at issue is that you are drawing an unsupported

> inference.

>

> The point I think Jonathan is making is that your

> test case does not prove what you are claiming it

> does. 16x32 <> 8x8. You have no evidence that the

> relevant factor was the block size and not the change

> in multi-block reads or any one of a number of other

> possible factors.

>

> The lab test should look like this:

> Test 1: Run test using 8K blocks.

> Test 2: Run the exact same test changing NOTHING

> other than the block size.

Here every one is forgetting the basic question. "Can we increase the performance in DW applications

by increasing db_block_size?". If you argue the difference is b'cos 16x32 <> 8x8 or 512K = 64K?, then

you are virtually agreeing that, performance matters by increasing the block size and read count.

The example i give again is identical database in same server (created using same script).

All parameters same except for db_block_size. I did clean restart of both database and server

(no excuse for data cache or network traffic or bang on server) and executed the following sql

set in the server.

Script Executed

Select *

 From v$version

/

Select Name

 From v$database

/

Select Name, Value

 From v$parameter

 Where Name In ('db_block_size', 'db_file_multiblock_read_count')

/

Select Current_timestamp

 From Dual

/

Select Count (1)

 From employee

/

Select Current_timestamp

 From Dual

/

Select Count (1)

 From department

/

Select Current_timestamp

 From Dual

/

Select Count (1)

 From employee emp, department dept

 Where emp.dept_code = dept.dept_code

/

Select Current_timestamp

 From Dual

/

Explain Plan For

 Select Count(1)

 From employee emp, department dept

 Where emp.dept_code = dept.dept_code

/

Select plan_table_output

 From Table (Dbms_xplan.display ())

/

===

SQL> autotrace OFF

linesize 80

linesize 80

wrap : lines will be wrapped

Select *

 2 From v$version

 3 /

BANNER

--

Oracle Database 10g Enterprise Edition Release 10.2.0.4.0 - Prod

PL/SQL Release 10.2.0.4.0 - Production

CORE 10.2.0.4.0 Production

TNS for 32-bit Windows: Version 10.2.0.4.0 - Production

NLSRTL Version 10.2.0.4.0 - Production

SQL> Select Name

 2 From v$database

 3 /

NAME

TPDB

SQL> Select Name, Value

 2 From v$parameter

 3 Where Name In ('db_block_size', 'db_file_multiblock_read_count')

 4 /

NAME VALUE

-- -----

db_block_size 8192

db_file_multiblock_read_count 8

SQL> Select Current_timestamp

 2 From Dual

 3 /

CURRENT_TIMESTAMP

04-JUN-08 09.19.22.038000 AM -05:00

SQL> Select Count (1)

 2 From employee

 3 /

 COUNT(1)

 5000000

SQL> Select Current_timestamp

 2 From Dual

 3 /

CURRENT_TIMESTAMP

04-JUN-08 09.19.32.678000 AM -05:00

SQL> Select Count (1)

 2 From department

 3 /

 COUNT(1)

 5000000

SQL> Select Current_timestamp

 2 From Dual

 3 /

CURRENT_TIMESTAMP

04-JUN-08 09.19.45.600000 AM -05:00

SQL> Select Count (1)

 2 From employee emp, department dept

 3 Where emp.dept_code = dept.dept_code

 4 /

 COUNT(1)

 5000000

SQL> Select Current_timestamp

 2 From Dual

 3 /

CURRENT_TIMESTAMP

04-JUN-08 09.20.42.396000 AM -05:00

SQL> Explain Plan For

 2 Select Count(1)

 3 From employee emp, department dept

 4 Where emp.dept_code = dept.dept_code

 5 /

Explained.

SQL> Select plan_table_output

 2 From Table (Dbms_xplan.display ())

 3 /

PLAN_TABLE_OUTPUT

--

Plan hash value: 4001065367

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 12 | | 15183 (2)| 00:03:03 |

| 1 | SORT AGGREGATE | | 1 | 12 | | | |

|* 2 | HASH JOIN | | 5004K| 57M| 85M| 15183 (2)| 00:03:03 |

| 3 | INDEX FAST FULL SCAN| EMPLOYEE_ID01 | 5004K| 28M| | 3260 (2)| 00:00:40 |

| 4 | INDEX FAST FULL SCAN| DEPARTMENT_ID01 | 5012K| 28M| | 3271 (2)| 00:00:40 |

--

PLAN_TABLE_OUTPUT

--

Predicate Information (identified by operation id):

 2 - access("EMP"."DEPT_CODE"="DEPT"."DEPT_CODE")

16 rows selected.

SQL> exit

==

SQL> Select *

 2 From v$version

 3 /

BANNER

--

Oracle Database 10g Enterprise Edition Release 10.2.0.4.0 - Prod

PL/SQL Release 10.2.0.4.0 - Production

CORE 10.2.0.4.0 Production

TNS for 32-bit Windows: Version 10.2.0.4.0 - Production

NLSRTL Version 10.2.0.4.0 - Production

SQL> Select Name

 2 From v$database

 3 /

NAME

DWDB

SQL> Select Name, Value

 2 From v$parameter

 3 Where Name In ('db_block_size', 'db_file_multiblock_read_count')

 4 /

NAME VALUE

-- ------

db_block_size 16384

db_file_multiblock_read_count 8

SQL> Select Current_timestamp

 2 From Dual

 3 /

CURRENT_TIMESTAMP

04-JUN-08 09.21.31.068000 AM -05:00

SQL> Select Count (1)

 2 From employee

 3 /

 COUNT(1)

 5000000

SQL> Select Current_timestamp

 2 From Dual

 3 /

CURRENT_TIMESTAMP

04-JUN-08 09.21.37.474000 AM -05:00

SQL> Select Count (1)

 2 From department

 3 /

 COUNT(1)

 5000000

SQL> Select Current_timestamp

 2 From Dual

 3 /

CURRENT_TIMESTAMP

04-JUN-08 09.21.47.911000 AM -05:00

SQL> Select Count (1)

 2 From employee emp, department dept

 3 Where emp.dept_code = dept.dept_code

 4 /

 COUNT(1)

 5000000

SQL> Select Current_timestamp

 2 From Dual

 3 /

CURRENT_TIMESTAMP

04-JUN-08 09.22.37.004000 AM -05:00

SQL> Explain Plan For

 2 Select Count(1)

 3 From employee emp, department dept

 4 Where emp.dept_code = dept.dept_code

 5 /

Explained.

SQL> Select plan_table_output

 2 From Table (Dbms_xplan.display ())

 3 /

PLAN_TABLE_OUTPUT

Plan hash value: 4001065367

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 12 | | 11879 (2)| 00:02:47 |

| 1 | SORT AGGREGATE | | 1 | 12 | | | |

|* 2 | HASH JOIN | | 4992K| 57M| 85M| 11879 (2)| 00:02:47 |

| 3 | INDEX FAST FULL SCAN| EMPLOYEE_ID01 | 4992K| 28M| | 2234 (2)| 00:00:32 |

| 4 | INDEX FAST FULL SCAN| DEPARTMENT_ID01 | 4999K| 28M| | 2236 (2)| 00:00:32 |

--

PLAN_TABLE_OUTPUT

Predicate Information (identified by operation id):

 2 - access("EMP"."DEPT_CODE"="DEPT"."DEPT_CODE")

16 rows selected.

SQL> exit

===

From the above result, if you compare the execution result for each query and the plan result, it's

clear that DWDB shows more performance than TPDB. I don't want to compare and explain each result set.

You do your math and see the truth.

Mr. Richard-

>>If you're going to claim a 10% difference, then make sure your arithmetic is correct (15748 vs. 19319

>> is not a 10% difference).

My bad math (shame on me for having masters in math and computer science). Also even if you say

"read document" million times, truth won't change

Mr. damorgan-

>>That the query is faster is not being questions. What is at issue is that you are drawing an unsupported

>>inference.

Oracle supports db_block_size from 2048 to 16384, at least for Windows (We confirmed with Support). Also,

refer Doc#B10752-01 page 87. As a Lab expert can you show some thing similar, like my above example, which

shows nothing is going to change related to performance after increasing the block size?

Thank you,

sp009

Message was edited by:

sp009

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 4, 2008 1:01 PM in response to: damorgan
Reply

> Exactly. That some here are capable of tuning it out

> is truly amazing.

>

> I am copying parts of this thread onto slides for my

> class at the university next year. There is a lot to

> be learned from observing people that don't or can't.

Here the tkprof result on both database for same query. Now it’s up to you test in

your lab and decide

Database :=TPDB

###############

TKPROF: Release 10.2.0.4.0 - Production on Wed Jun 4 11:46:24 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Trace file: tpdb_ora_428.trc

Sort options: default

**

count = number of times OCI procedure was executed

cpu = cpu time in seconds executing

elapsed = elapsed time in seconds executing

disk = number of physical reads of buffers from disk

query = number of buffers gotten for consistent read

current = number of buffers gotten in current mode (usually for update)

rows = number of rows processed by the fetch or execute call

**

Select Count(1)

From employee emp, department dept

Where emp.dept_code = dept.dept_code

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 12.51 21.54 38750 23490 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 12.51 21.54 38750 23490 0 1

Misses in library cache during parse: 0

Optimizer mode: FIRST_ROWS

Parsing user id: SYS

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=23490 pr=38750 pw=15285 time=21546363 us)

5000000 HASH JOIN (cr=23490 pr=38750 pw=15285 time=29565227 us)

5000000 INDEX FAST FULL SCAN EMPLOYEE_ID01 (cr=11745 pr=11725 pw=0 time=525 us)(object id 51779)

5000000 INDEX FAST FULL SCAN DEPARTMENT_ID01 (cr=11745 pr=11725 pw=0 time=231 us)(object id 51780)

**

alter session set sql_trace=false

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 2 0.00 0.00 0 0 0 0

Misses in library cache during parse: 0

Parsing user id: SYS

**

OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 2 0.00 0.00 0 0 0 0

Execute 2 0.00 0.00 0 0 0 0

Fetch 2 12.51 21.54 38750 23490 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 6 12.51 21.54 38750 23490 0 1

Misses in library cache during parse: 0

OVERALL TOTALS FOR ALL RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 0 0.00 0.00 0 0 0 0

Execute 0 0.00 0.00 0 0 0 0

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 0 0.00 0.00 0 0 0 0

Misses in library cache during parse: 0

 2 user SQL statements in session.

 0 internal SQL statements in session.

 2 SQL statements in session.

**

Trace file: tpdb_ora_428.trc

Trace file compatibility: 10.01.00

Sort options: default

 1 session in tracefile.

 2 user SQL statements in trace file.

 0 internal SQL statements in trace file.

 2 SQL statements in trace file.

 2 unique SQL statements in trace file.

 45 lines in trace file.

 33 elapsed seconds in trace file.

Database :=DWDB

###############

TKPROF: Release 10.2.0.4.0 - Production on Wed Jun 4 11:50:37 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Trace file: dwdb_ora_1484.trc

Sort options: default

**

count = number of times OCI procedure was executed

cpu = cpu time in seconds executing

elapsed = elapsed time in seconds executing

disk = number of physical reads of buffers from disk

query = number of buffers gotten for consistent read

current = number of buffers gotten in current mode (usually for update)

rows = number of rows processed by the fetch or execute call

**

Select Count(1)

From employee emp, department dept

Where emp.dept_code = dept.dept_code

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 12.00 20.28 19123 11596 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 12.00 20.28 19123 11596 0 1

Misses in library cache during parse: 0

Optimizer mode: FIRST_ROWS

Parsing user id: SYS

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=11596 pr=19123 pw=7560 time=20284142 us)

5000000 HASH JOIN (cr=11596 pr=19123 pw=7560 time=19622027 us)

5000000 INDEX FAST FULL SCAN EMPLOYEE_ID01 (cr=5798 pr=5778 pw=0 time=484 us)(object id 47749)

5000000 INDEX FAST FULL SCAN DEPARTMENT_ID01 (cr=5798 pr=5778 pw=0 time=210 us)(object id 47750)

**

alter session set sql_trace=false

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 2 0.00 0.00 0 0 0 0

Misses in library cache during parse: 0

Parsing user id: SYS

**

OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 2 0.00 0.00 0 0 0 0

Execute 2 0.00 0.00 0 0 0 0

Fetch 2 12.00 20.28 19123 11596 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 6 12.00 20.28 19123 11596 0 1

Misses in library cache during parse: 0

OVERALL TOTALS FOR ALL RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 0 0.00 0.00 0 0 0 0

Execute 0 0.00 0.00 0 0 0 0

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 0 0.00 0.00 0 0 0 0

Misses in library cache during parse: 0

 2 user SQL statements in session.

 0 internal SQL statements in session.

 2 SQL statements in session.

**

Trace file: dwdb_ora_1484.trc

Trace file compatibility: 10.01.00

Sort options: default

 1 session in tracefile.

 2 user SQL statements in trace file.

 0 internal SQL statements in trace file.

 2 SQL statements in trace file.

 2 unique SQL statements in trace file.

 51 lines in trace file.

 25 elapsed seconds in trace file.

>>I am copying parts of this thread onto slides for my

>>class at the university next year. There is a lot to

>>be learned from observing people that don't or can't.

Probably you should rethink about that

sp009

Billy

Verreynne

Posts: 6,628

Registered: 5/27/99

Re: Larger vs. Small data block

Posted: Jun 4, 2008 1:13 PM in response to: sp009
Reply

> Select Count (1) ...

And that is a lot better and faster than a count(*) I presume?

I can make INSERTs on almost any table significantly faster on any Oracle database. Do not believe my claim? Well, you do a

"heavy" insert on said table. Time it. I drop all indexes, constraints and triggers on the applicable table. You then repeat

your "heavy" insert and time it. Now compare the times.

I guarantee a 90% success rate of very noticeable performance increase.

Performance tuning is not about focusing on a single thing and attempting to make that thing as fast as possible. It is not

the faster F1 car that wins a F1GP race. It is about the complete car, how well it was setup for the track, the choice of

tires, race tactics and how good the driver is.

It's the same in Oracle (where the driver is the application).

Sure, I can make your INSERTs freakingly fast. But at what cost to data integrity and queries?

So the question is.. what is the price to pay for this "improvement" in performance you've demonstrated?

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 4, 2008 3:18 PM in response to: Jonathan Lewis
Reply

Jonathan,

> > That the query is faster is not being questioned.

> >

>

> The speed of the query is not available for

> questioning - as far as the post from sp009 goes the

> query has not been run, so there are no figures

> whatsoever about the actual speed of the query. All

> we have seen is that if you change the input

> statistics and optimizer parameters for a query the

> execution plan costs can change.

>

> > The lab test should look like this:

> > Test 1: Run test using 8K blocks.

> > Test 2: Run the exact same test changing NOTHING

> other than the block size.

>

> Test 2 should change the

> db_file_multiblock_read_count size so that the

> product of block_size and

> db_file_multiblock_read_count does not change from

> the value in Test 1.

>

> Regards

> Jonathan Lewis

> http://jonathanlewis.wordpress.com

> http://www.jlcomp.demon.co.uk

In my latest example nothing got changed between database or query execution plan except db_block_size.

>>Test 2 should change the db_file_multiblock_read_count size so that the product of block_size and

>>db_file_multiblock_read_count does not change from the value in Test 1.

Are you are saying, in order to justify the theory "db_block_size will not change performance

in data warehousing applications", you should decrease db_file_multiblock_read_count, in case you

increase db_block_size???

Oracle never says db_block_size * db_file_multiblock_read_count should be same

across different Database and Platforms. If it does, please point documentation in that.

Regards

sp009

mpowel01

Posts: 2,840

Registered: 12/8/98

Re: Larger vs. Small data block

Posted: Jun 4, 2008 3:31 PM in response to: sp009
Reply

sp009, if I was trying to compare the results of the same query when one database had an 8k block size and another had a 32k

block size I would want the db_file_multiblock_read_count X db_block_size to equal the same size IO otherwise the difference

in performance may be due to the difference in IO size and not due to the difference in block size itself.

HTH -- Mark D Powell --

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 4, 2008 3:57 PM in response to: Charles Hooper
Reply

>

> I am probably forgetting something here, but as

> sp009's explain plan on Oracle 10.2.0.4 only shows

> the estimated time for data retrieval, would not the

> values in sys.aux_stats$ be more relevant to the

> estimated time for data retrieval than

> db_file_multiblock_read_count? I thought that on

> Oracle 10.2 CPU costing values would be used for

> estimated time, while db_file_multiblock_read_count

> will be used for actual data retrieval times.

>

Charles,

I didn't mention system statistics because it was clear from his example that sp009 was using the default values (10 m/s seek

time and 4K per m/s transfer rate) as the conversion factor from cost to time for the 8K plan was 12m/s and the conversion

factor for the 16K plan was 14m/s).

Since sp009 has set db_file_multiblock_read_count in both cases, the value supplied would have been used as the MBRC.

Updated: I forgot to comment on the 'allstats last' option with dbms_xplan.display_cursor(). It's quite useful, but it can add

a huge overhead when enabled with 100% sample rate - so much so that the query runtime beomes completely meaningless. So it's

one of those things that you might look at and then discard because the measurement effect outweighs the difference you are

trying to measure.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 4, 2008 4:05 PM in response to: sp009
Reply

> Oracle never says db_block_size *

> db_file_multiblock_read_count should be same

> across different Database and Platforms. If it does,

> please point documentation in that.

>

> Regards

> sp009

sp009,

Try this search:

http://www.oracle.com/pls/db111/search?remark=quick_search&word=+db_file_multiblock_read_count&partno=

From:

http://download.oracle.com/docs/cd/B28359_01/server.111/b28313/usingpe.htm#sthref1646

"The recommended value for this parameter is eight for 8 KB block size, or four for 16 KB block size. The default is 8. This

parameter determines how many database blocks are read with a single operating system READ call. The upper limit for this

parameter is platform-dependent. If you set DB_FILE_MULTIBLOCK_READ_COUNT to an excessively high value, your operating system

will lower the value to the highest allowable level when you start your database. In this case, each platform uses the highest

value possible. Maximum values generally range from 64 KB to 1 MB."

From:

http://download.oracle.com/docs/cd/B28359_01/server.111/b32009/appa_aix.htm#BEHIIECG

"Set this parameter so that its value when multiplied by the value of the DB_BLOCK_SIZE parameter produces a number larger than

the Logical Volume Manager stripe size. Such a setting causes more disks to be used."

From:

http://download-uk.oracle.com/docs/cd/B28359_01/server.111/b28320/initparams053.htm

"As of Oracle Database 10g release 2, the default value of this parameter is a value that corresponds to the maximum I/O size

that can be performed efficiently. This value is platform-dependent and is 1MB for most platforms.Because the parameter is

expressed in blocks, it will be set to a value that is equal to the maximum I/O size that can be performed efficiently divided

by the standard block size. Note that if the number of sessions is extremely large the multiblock read count value is decreased

to avoid the buffer cache getting flooded with too many table scan buffers."

"The maximum value is the operating system's maximum I/O size expressed as Oracle blocks ((max I/O size)/DB_BLOCK_SIZE). If you

set this parameter to a value greater than the maximum, Oracle uses the maximum."

From:

http://download.oracle.com/docs/cd/B28359_01/server.111/b28274/optimops.htm#BABDECGJ

"DB_FILE_MULTIBLOCK_READ_COUNT: This parameter specifies the number of blocks that are read in a single I/O during a full table

scan or index fast full scan. The optimizer uses the value of DB_FILE_MULTIBLOCK_READ_COUNT to cost full table scans and index

fast full scans. Larger values result in a cheaper cost for full table scans and can result in the optimizer choosing a full

table scan over an index scan. If this parameter is not set explicitly (or is set is 0), the optimizer will use a default value

of 8 when costing full table scans and index fast full scans."

From:

http://download.oracle.com/docs/cd/B28359_01/server.111/b28274/stats.htm#sthref1191

"In release 10.2, the optimizer uses the value of mbrc when performing full table scans (FTS). The value of

db_file_multiblock_read_count is set to the maximum allowed by the operating system by default. However, the optimizer uses

mbrc=8 for costing. The "real" mbrc is actually somewhere in between since serial multiblock read requests are processed by the

buffer cache and split in two or more requests if some blocks are already pinned in the buffer cache, or when the segment size

is smaller than the read size. The mbrc value gathered as part of workload statistics is thus useful for FTS estimation.

During the gathering process of workload statistics, it is possible that mbrc and mreadtim will not be gathered if no table

scans are performed during serial workloads, as is often the case with OLTP systems. On the other hand, FTS occur frequently on

DSS systems but may run parallel and bypass the buffer cache. In such cases, sreadtim will still be gathered since index lookup

are performed using the buffer cache. If Oracle cannot gather or validate gathered mbrc or mreadtim, but has gathered sreadtim

and cpuspeed, then only sreadtim and cpuspeed will be used for costing. FTS cost will be computed using analytical algorithm

implemented in previous releases. Another alternative to computing mbrc and mreadtim is to force FTS in serial mode to allow

the optimizer to gather the data."

It looks like the documentation does suggest that db_block_size * db_file_multiblock_read_count should be considered.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 4, 2008 4:09 PM in response to: sp009
Reply

>

> Are you are saying, in order to justify the theory

> "db_block_size will not change performance

> in data warehousing applications", you should

> decrease db_file_multiblock_read_count, in case you

> increase db_block_size???

>

> Oracle never says db_block_size *

> db_file_multiblock_read_count should be same

> across different Database and Platforms. If it does,

> please point documentation in that.

>

If the purpose of your testing is an intelligent examination of the effects of different block sizes, then you should

certainly be aware of the significance of the relationship between the block size and the multiblock read count.

If you wish to think otherwise then the logic of your argument suggests that you would advise someone to rebuild their

database before suggesting that they try increasing the multiblock read count.

Having said that, though, I would like to point out that you are using 10.2.0.4 - and the suggestion from Oracle is that you

don't set the db_file_multiblock_read_count at all in 10g. As it is, you've picked a fairly arbitrary value that happens to

introduce an unfair bias in the 8K test.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 4, 2008 4:13 PM in response to: sp009
Reply

sp009,

Much better; however, given the interest in performance, it would have been helpful to run the trace at level 8 and including

the wait summary so that we could see where the wait time went - the number, type, and average length of the waits could be

very informative.

If you feel like running the test again, please remember the significance of the db_file_multiblock_read_count.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 4, 2008 4:18 PM in response to: sp009
Reply

> i can see that after switching to block size

> 16 and read count 32 (i got the opportunity to test

> first using our production data during server

> upgrade) , me and my DB users can see noticeable

> performance gain in our DW application.

So you've moved your production database to a new server - and to many people that would probably suggest:

New CPUs - does that mean faster with a larger cache

New bus - does that mean faster

New memory - does that mean faster, and more

New HBA to link you to the disk storage

New network cards to link you to the end-users

You've copied all the data from one database to another

which may have dealt with some cleanout overheads,

and may have eliminated empty space and packed the data better

and will have moved the data to a different part of the disk array

(maybe it's even a new disk array to go with the new server)

You've changed the block size

Perhaps you also changed the multiblock read count - as your test suggests.

When the users say the system is running faster - how can you be so confident that the improvement is due to the change from

8K to 16K ?

.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 4, 2008 4:24 PM in response to:
Reply

> >> Unfortunately the variation in the time for the

> hash join line is affected by the difference in

> estimates of the sizes of the inputs:

>

> OK

>

> So you say that this is yet another reason why

> artificially contrived test cases are invalid when we

> are proving performance issues, right?

>

> For once, we agree!

>

> When we are talking database-wide performance

> "proof", respesentative benches are the ONLY way to

> predict the performance benefits of different

> blocksizes , IMHO. When you scale the "small"

> improvements with different blocksizes to systems

> with thousands of concurrent transactions, it can

> make a big difference, for my clients anyway. . .

I've simply described why there is a difference between the costs calculated for

the same execution plan on two different systems, yet you seem to think that this

is confirmation of one of your pet theories about run-time activity.

Let me demonstrate, through an analogy, what this tells us about your understanding of cost-based optimsation:

Me: "Your road map was printed in 2001 so it doesn't show the M6 toll road".

You: "Good, so you agree that we have to drive from London to Birmingham to see how long it will take to get there."

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 4, 2008 4:47 PM in response to: Charles Hooper
Reply

Charles

>>It looks like the documentation does suggest that db_block_size * db_file_multiblock_read_count

>> should be considered.

Good point. It should be considered when you setup the stripe depth of your I/O based on OLTP or

DSS environment

Here topic is "Can we increase performance in DW applications by increasing db_block_size" ?

Of course yes. How?

Maximize db_block_size (2k - 16k) and in tern maximize the I/O request, db_block_size * db_file_multiblock_read_count

(Maximum db_file_multiblock_read_count depends on OS)

My intention is to prove, in low-concurrency DSS environment, increasing the db_block_size benefits

(Of course db_file_multiblock_read_count should be a candidate too) to make less number of I/O

data request and hence increasing the performance.

Regards,

sp009

Alvaro

Buitrago

Posts: 17

From: Cali

Registered: 3/25/08

Re: Larger vs. Small data block

Posted: Jun 4, 2008 5:04 PM in response to: user619401
Reply

Sp009

You don't have probe anything

The correct test would be:

1. block size = 8k and multiread = 8, versus block size = 8, multiread = 32

2. block size = 16k and multiread = 8 versus block size = 16k multiread = 32

3. block size = 8k and multiread = 64 versus block size = 16k multiread = 32

So you can compare the impact of block size versus th impact of multiread

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 4, 2008 7:53 PM in response to: Alvaro Buitrago
Reply

xxx's alter ego is not interested in a correct test. He is interested in defending a hopelessly flawed position.

Even a first-year IT students knows that to determine the impact of a change to a system ... you change one, and only one,

parameter at a time.

Re: Larger vs. Small data block

Posted: Jun 4, 2008 8:14 PM in response to: damorgan
Reply

jgarry

Posts: 128

From: Just outside of

beautiful Vista, California

Registered: 7/20/98

Re: Larger vs. Small data block

Posted: Jun 4, 2008 8:20 PM in response to: sp009
Reply

> TNS for 32-bit Windows: Version 10.2.0.4.0 - Production

I'm wondering if there is something in Windows itself that is optimized for 8K.

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 4, 2008 8:25 PM in response to: Jonathan Lewis
Reply

Mr. Jonathan,

>>Much better; however, given the interest in performance, it would have been helpful to run the trace at level 8

I would definitely get a try as per your request and will let you know the tkprof result soon as possible.

Regards,

sp009

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 4, 2008 10:07 PM in response to: damorgan
Reply

> xxx's alter ego is not interested in a correct test.

> He is interested in defending a hopelessly flawed

> position.

>

> Even a first-year IT students knows that to determine

> the impact of a change to a system ... you change

> one, and only one, parameter at a time.

Mr. Damorgan,

I would like to quote your words again,

>>That the query is faster is not being questions. What is at issue is that you are

>>drawing an unsupported inference.

>>The point I think Jonathan is making is that your test case does not prove what you

>>are claiming it does. 16x32 <> 8x8. You have no evidence that the relevant factor was

>>the block size and not the change in multi-block reads or any one of a number of

>>other possible factors.

>>The lab test should look like this:

>>Test 1: Run test using 8K blocks.

>>Test 2: Run the exact same test changing NOTHING other than the block size.

If you can't compete with my test case or if you or your students failed to create

a contrary test case, then i would encourage you to stop promoting troll and accept the fact.

Thank you,

sp009

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 4, 2008 10:10 PM in response to: Jonathan Lewis
Reply

Jonathan,

Thanks for the response. I did not identify the clues that system statistics had not been collected, but I suspected that

absence of system statistics might have been the case for at least one of the test runs.

The last two quotes that I provided from the Oracle documentation (at roughly the time of your response) seemed to conflict

with one another. The second to the last quote essentially reinforces/restates your comments about the effects of sp009's

setting of db_file_multiblock_read_count affecting the estimated cost of a query. The final quote from the documentation

states something a bit different: "the optimizer uses mbrc=8 for costing", assuming I read correctly, if sreadtim and

cpuspeed statistics are not both collected.

I have a bit more reading to do before I fully understand the logic. Thanks again to you and Richard Foote for helping to

clear up the misunderstandings.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 4, 2008 10:57 PM in response to: sp009
Reply

You don't have any facts xxx as has been pointed out by all the real people in this thread.

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 5, 2008 1:42 AM in response to:
Reply

Instead of just citing (over and over) that TPC-C uses multiple blocksizes, perhaps you could explain and educate where (what

objects) and why (what performance advantage it gives) the specific sizes are used.

Also, if you have any experiments (test cases) that support your position and that quantify the possible gains, it would

strengthen your argument.

--

Regards,

Greg Rahn

http://structureddata.org

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Re: Larger vs. Small data block

Posted: Jun 5, 2008 2:31 AM in response to: sp009
Reply

> Here topic is "Can we increase performance in DW applications by increasing db_block_size" ?

>

Registered: 10/3/07 > Of course yes. How?

The answer is both Yes and No. Perhaps it may be done by increasing db_block_size, but it can also be done without, which

raises the question: Does blocksize matter for table scans? I'll get there in a bit.

> Maximize db_block_size (2k - 16k) and in tern

> maximize the I/O request, db_block_size * db_file_multiblock_read_count

> (Maximum db_file_multiblock_read_count depends on OS)

As you have correctly stated, the I/O request size equation is:

db_block_size * db_file_multiblock_read_count = I/O size (max)

> My intention is to prove, in low-concurrency DSS environment, increasing the db_block_size benefits

> (Of course db_file_multiblock_read_count should be a candidate too) to make less number of I/O

> data request and hence increasing the performance.

Given the above equation for I/O size there are two variables that influence the I/O size and one of them is not block size.

This brings up the question: Why change block size when you can get the benefit of the maximum read size (1MB) and not have

to worry about potentially changing index access plans to FTS plans because of costing issues?

Think of it like this: If I grab $100 from a bucket of coins given these rules:

- with each grab, exactly $1 is retrieved

- the same denomination of coin is always retrieved for a given "run"

- the time to complete the task is only related to the number of grabs, not the number of coins obtained

Regardless of the denomination of the coins grabbed, I need to grab 100 times. I could grab 4 quarters, or 10 dimes or 20

nickels or 100 pennies and each grab "performs" the same.

To demonstrate my claim, I will create an experiment (test case). I am also going to add to my claim that no matter what the

blocksize, I can get the same read performance.

The experiment:

- 4 identical tables, with block sizes of 2k, 4k, 8k and 16k

- db_file_multiblock_read_count will be unset, letting Oracle choose the best size

- cold cache so forcing physical reads

- ASM storage, so no file system cache

- query will be: select * from table

The question: Does blocksize have any impact on elapsed time for a FTS query with 100% physical I/Os?

For the data in my table I'm going to use the WEB_RETURNS (SF=100GB) table from the TPC-DS. The flat file is 1053529104 bytes

(as reported from ls).

create tablespace tpcds_8k datafile '+GROUP1' size 1500m;

create tablespace tpcds_2k datafile '+GROUP1' size 1500m blocksize 2k;

create tablespace tpcds_4k datafile '+GROUP1' size 1500m blocksize 4k;

create tablespace tpcds_16k datafile '+GROUP1' size 1500m blocksize 16k;

create table web_returns_8k tablespace tpcds_8k as select * from web_returns_et;

create table web_returns_2k tablespace tpcds_2k as select * from web_returns_et;

create table web_returns_4k tablespace tpcds_4k as select * from web_returns_et;

create table web_returns_16k tablespace tpcds_16k as select * from web_returns_et;

select segment_name, sum(bytes)/1024/1024 mb from user_segments group by segment_name order by 2;

SEGMENT_NAME MB

-------------------- ----------

WEB_RETURNS_16K 880

WEB_RETURNS_8K 896

WEB_RETURNS_4K 920

WEB_RETURNS_2K 976

SQL> desc WEB_RETURNS_16K

 Name Null? Type

 --- -------- ----------------------------

 WR_RETURNED_DATE_SK NUMBER(38)

 WR_RETURNED_TIME_SK NUMBER(38)

 WR_ITEM_SK NUMBER(38)

 WR_REFUNDED_CUSTOMER_SK NUMBER(38)

 WR_REFUNDED_CDEMO_SK NUMBER(38)

 WR_REFUNDED_HDEMO_SK NUMBER(38)

 WR_REFUNDED_ADDR_SK NUMBER(38)

 WR_RETURNING_CUSTOMER_SK NUMBER(38)

 WR_RETURNING_CDEMO_SK NUMBER(38)

 WR_RETURNING_HDEMO_SK NUMBER(38)

 WR_RETURNING_ADDR_SK NUMBER(38)

 WR_WEB_PAGE_SK NUMBER(38)

 WR_REASON_SK NUMBER(38)

 WR_ORDER_NUMBER NUMBER(38)

 WR_RETURN_QUANTITY NUMBER(38)

 WR_RETURN_AMT NUMBER(7,2)

 WR_RETURN_TAX NUMBER(7,2)

 WR_RETURN_AMT_INC_TAX NUMBER(7,2)

 WR_FEE NUMBER(7,2)

 WR_RETURN_SHIP_COST NUMBER(7,2)

 WR_REFUNDED_CASH NUMBER(7,2)

 WR_REVERSED_CHARGE NUMBER(7,2)

 WR_ACCOUNT_CREDIT NUMBER(7,2)

 WR_NET_LOSS NUMBER(7,2)

I'm using a pro*c program to fetch the rows with an array size of 100. This way I don't have to worry about spool space, or

overhead of SQL*Plus formatting.

Output from a run is such:

BEGIN_TIMESTAMP QUERY_FILE ELAPSED_SECONDS ROW_COUNT

----------------- -------------------------------- --------------- ----------

20080604 22:22:19 2.sql 125.696083 7197670

20080604 22:24:25 4.sql 125.439680 7197670

20080604 22:26:30 8.sql 125.502804 7197670

20080604 22:28:36 16.sql 125.251398 7197670

As you can see, no matter what the block size, the execution is the same (discounting fractions of a second).

The TKPROF output:

TKPROF: Release 11.1.0.6.0 - Production on Wed Jun 4 22:35:07 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Trace file: v11_ora_12162.trc

Sort options: default

**

count = number of times OCI procedure was executed

cpu = cpu time in seconds executing

elapsed = elapsed time in seconds executing

disk = number of physical reads of buffers from disk

query = number of buffers gotten for consistent read

current = number of buffers gotten in current mode (usually for update)

rows = number of rows processed by the fetch or execute call

**

/* 2.sql */

select * from web_returns_2k

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 71978 25.39 26.42 493333 560355 0 7197670

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 71980 25.39 26.42 493333 560355 0 7197670

Misses in library cache during parse: 0

Optimizer mode: ALL_ROWS

Parsing user id: 50

Rows Row Source Operation

------- ---

7197670 TABLE ACCESS FULL WEB_RETURNS_2K (cr=560355 pr=493333 pw=493333 time=88067 us cost=96149 size=770150690

card=7197670)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 71980 0.00 0.16

 SQL*Net message from client 71980 0.00 93.20

 db file sequential read 3 0.00 0.01

 direct path read 1097 0.04 0.13

 SQL*Net more data to client 71976 0.00 1.88

**

/* 4.sql */

select * from web_returns_4k

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 2 0.00 0.00 0 0 0 0

Execute 2 0.00 0.03 0 0 0 0

Fetch 71978 24.98 25.92 232603 302309 0 7197670

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 71982 24.98 25.96 232603 302309 0 7197670

Misses in library cache during parse: 0

Parsing user id: 50

Rows Row Source Operation

------- ---

7197670 TABLE ACCESS FULL WEB_RETURNS_4K (cr=302309 pr=232603 pw=232603 time=84876 us cost=51644 size=770150690

card=7197670)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 71981 0.00 0.15

 SQL*Net message from client 71981 0.00 93.19

 db file sequential read 2 0.00 0.01

 direct path read 1034 0.02 0.19

 SQL*Net more data to client 71976 0.00 1.85

 rdbms ipc reply 1 0.03 0.03

**

/* 8.sql */

select * from web_returns_8k

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 2 0.00 0.00 0 0 0 0

Execute 2 0.00 0.01 0 0 0 0

Fetch 71978 24.61 25.71 113157 183974 0 7197670

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 71982 24.61 25.73 113157 183974 0 7197670

Misses in library cache during parse: 0

Parsing user id: 50

Rows Row Source Operation

------- ---

7197670 TABLE ACCESS FULL WEB_RETURNS_8K (cr=183974 pr=113157 pw=113157 time=85549 us cost=31263 size=770150690

card=7197670)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 71981 0.00 0.15

 SQL*Net message from client 71981 0.00 93.32

 db file sequential read 1 0.01 0.01

 direct path read 999 0.01 0.17

 SQL*Net more data to client 71976 0.00 1.83

 rdbms ipc reply 1 0.01 0.01

**

/* 16.sql */

select * from web_returns_16k

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 71978 24.74 25.59 55822 127217 0 7197670

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 71980 24.74 25.59 55822 127217 0 7197670

Misses in library cache during parse: 0

Optimizer mode: ALL_ROWS

Parsing user id: 50

Rows Row Source Operation

------- ---

7197670 TABLE ACCESS FULL WEB_RETURNS_16K (cr=127217 pr=55822 pw=55822 time=82996 us cost=21480 size=770150690 card=7197670)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 71980 0.00 0.15

 SQL*Net message from client 71980 0.00 93.39

 db file sequential read 1 0.00 0.00

 direct path read 981 0.01 0.16

 SQL*Net more data to client 71976 0.00 1.84

**

Why is this? Because Oracle is optimizing the multi block read count automatically.

select FILE_ID,TABLESPACE_NAME from dba_data_files where TABLESPACE_NAME like 'TPC%'

 FILE_ID TABLESPACE_NAME

---------- ------------------------------

 16 TPCDS_8K

 17 TPCDS_2K

 18 TPCDS_4K

 19 TPCDS_16K

2k: WAIT #2: nam='direct path read' ela= 37 file number=17 first dba=33280 block cnt=512 obj#=55839 tim=1212643347820647

4k: WAIT #2: nam='direct path read' ela= 33 file number=18 first dba=16640 block cnt=256 obj#=55840 tim=1212643474070675

8k: WAIT #1: nam='direct path read' ela= 30 file number=16 first dba=8320 block cnt=128 obj#=55838 tim=1212643599631927

16k:WAIT #2: nam='direct path read' ela= 39 file number=19 first dba=55040 block cnt=64 obj#=55841 tim=1212643838893785

The raw trace file show us that reads are optimized to 1MB. For example, with a 2k block, 512 blocks are read at a time.

So what does this experiment show us?

In cases where MBRC kicks in, it actually is NOT the blocksize that really matters, but the read size of the I/O. More

importantly, the Oracle database can decide the optimal MBRC no matter what the blocksize, demonstrating there is no

advantage to a larger (or even smaller) blocksize in this case.

--

Regards,

Greg Rahn

http://structureddata.org

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 5, 2008 3:45 AM in response to: Charles Hooper
Reply

Charles,

In response to your most recent posting I have gone back to review the extracts you picked out from the Oracle manuals -

noting that they were all from the 11g manuals.

It's an interesting collection that demonstrates two things:

a) There is a need to consider db_file_multiblock_read_count in conjunction with db_block_size.

b) The manuals start with some errors built in, and then get out of date

>

> From:

> http://download.oracle.com/docs/cd/B28359_01/server.11

> 1/b28313/usingpe.htm#sthref1646

> "The recommended value for this parameter is eight

> for 8 KB block size, or four for 16 KB block size.

> The default is 8. This parameter determines how many

> database blocks are read with a single operating

> system READ call. The upper limit for this parameter

> is platform-dependent. If you set

> DB_FILE_MULTIBLOCK_READ_COUNT to an excessively high

> value, your operating system will lower the value to

> the highest allowable level when you start your

> database. In this case, each platform uses the

> highest value possible. Maximum values generally

> range from 64 KB to 1 MB."

>

This should have been changed dramatically after 9i - the recommendation from 10g is to leave the parameter unset and let

Oracle work things out for itself. Technically it's not the operating system that lowers the value - Oracle negotiates with

the O/S to discover the largest O/S read size and Oracle lowers the value.

> From:

> http://download.oracle.com/docs/cd/B28359_01/server.11

> 1/b32009/appa_aix.htm#BEHIIECG

> "Set this parameter so that its value when multiplied

> by the value of the DB_BLOCK_SIZE parameter produces

> a number larger than the Logical Volume Manager

> stripe size. Such a setting causes more disks to be

> used."

>

As above - it's a comment that should have been wiped from the 10g manuals.

> From:

> http://download-uk.oracle.com/docs/cd/B28359_01/server

> .111/b28320/initparams053.htm

> "As of Oracle Database 10g release 2, the default

> value of this parameter is a value that corresponds

> to the maximum I/O size that can be performed

> efficiently. This value is platform-dependent and is

> 1MB for most platforms.Because the parameter is

> expressed in blocks, it will be set to a value that

> is equal to the maximum I/O size that can be

> performed efficiently divided by the standard block

> size. Note that if the number of sessions is

> extremely large the multiblock read count value is

> decreased to avoid the buffer cache getting flooded

> with too many table scan buffers."

> "The maximum value is the operating system's maximum

> I/O size expressed as Oracle blocks ((max I/O

> size)/DB_BLOCK_SIZE). If you set this parameter to a

> value greater than the maximum, Oracle uses the

> maximum."

>

Succinct, covers all the important points in a well ordered manner.

You could argue that it should tell you what happens when you use a non-standard block size, but the explanation of how the

value is derived gives you a good idea of how to make an intelligent guess - which makes it a good example of how to avoid

adding excess details that might distract novices while ensuring that more experience readers still get good information. It

doesn't say anything about what impact this setting might have on costing - but presumably that's not considered relevant at

this point of the manual.

> From:

> http://download.oracle.com/docs/cd/B28359_01/server.11

> 1/b28274/optimops.htm#BABDECGJ

> "DB_FILE_MULTIBLOCK_READ_COUNT: This parameter

> specifies the number of blocks that are read in a

> single I/O during a full table scan or index fast

> full scan. The optimizer uses the value of

> DB_FILE_MULTIBLOCK_READ_COUNT to cost full table

> scans and index fast full scans. Larger values result

> in a cheaper cost for full table scans and can result

> in the optimizer choosing a full table scan over an

> index scan. If this parameter is not set explicitly

> (or is set is 0), the optimizer will use a default

> value of 8 when costing full table scans and index

> fast full scans."

>

There are various examples of poor wording and ambiguity in the explanations in this section, but most significantly, it went

out of date at 9i and should have underfone a massive rewrite then. The last line is particularly bad - I'd have to go back

and check earlier versions, but the last time I checked 10.2 the run-time engine used a value of 1 if you set the parameter

to zero (this may have been a change that arrived with CPU costing) so if anyone reads and follows this advice in 10.2 (and a

couple of people on this forum have, already) then they can run into problems with insane execution plans.

> From:

> http://download.oracle.com/docs/cd/B28359_01/server.11

> 1/b28274/stats.htm#sthref1191

> "In release 10.2, the optimizer uses the value of

> mbrc when performing full table scans (FTS). The

> value of db_file_multiblock_read_count is set to the

> maximum allowed by the operating system by default.

> However, the optimizer uses mbrc=8 for costing. The

> "real" mbrc is actually somewhere in between since

> serial multiblock read requests are processed by the

> buffer cache and split in two or more requests if

> some blocks are already pinned in the buffer cache,

> or when the segment size is smaller than the read

> size. The mbrc value gathered as part of workload

> statistics is thus useful for FTS estimation.

> During the gathering process of workload statistics,

> it is possible that mbrc and mreadtim will not be

> gathered if no table scans are performed during

> serial workloads, as is often the case with OLTP

> systems. On the other hand, FTS occur frequently on

> DSS systems but may run parallel and bypass the

> buffer cache. In such cases, sreadtim will still be

> gathered since index lookup are performed using the

> buffer cache. If Oracle cannot gather or validate

> gathered mbrc or mreadtim, but has gathered sreadtim

> and cpuspeed, then only sreadtim and cpuspeed will be

> used for costing. FTS cost will be computed using

> analytical algorithm implemented in previous

> releases. Another alternative to computing mbrc and

> mreadtim is to force FTS in serial mode to allow the

> optimizer to gather the data."

>

The opening statement is wrong - Oracle uses the value of the MBRC statistic when calculating the cost of performing the full

tablescan (or index fast full scan). The whole thing is an example of writing that will not help the novice reader understand

how things work - and I'm not sure that the note is correct in its description of how the optimizer responds to incomplete

system stats.

It's an interesting point that from 10.2 onwards the MBRC is supposed to default to 8 if you haven't set the

db_file_mulitblock_read_count. (Technically, it's the _db_file_optimizer_read_count that defaults to 8 and then the MBRC

copies the parameter).

You might wonder if this is a setting that is actually dependent on the block_size. The last time I checked on a system with

16K blocks, though, it wasn't different - the value really does seem to be fixed at 8. This means that if you've allowed the

db_file_mulitblock_read_count and system statistics to default, the optimizer will favour tablescans and index fast full

scans in a system with a larger block size. (I mentioned in my book how moving an object to a tablespace with a different

block size can cause a change in execution plan - this is another aspect of the same sort of thing).

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Faust

Posts: 797

From: Middle Europe

Registered: 1/1/07

Re: Larger vs. Small data block

Posted: Jun 5, 2008 6:08 AM in response to: Jonathan Lewis
Reply

I found sharing knowledge in this thread really great.

Thank you all !!!

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 5, 2008 6:58 AM in response to: Jonathan Lewis
Reply

> Charles,

>

> In response to your most recent posting I have gone

> back to review the extracts you picked out from the

> Oracle manuals - noting that they were all from the

> 11g manuals.

>

> It's an interesting collection that demonstrates two

> things:

> a) There is a need to consider

> db_file_multiblock_read_count in conjunction with

> db_block_size.

> b) The manuals start with some errors built in, and

> then get out of date

(snip)

> The opening statement is wrong - Oracle uses the

> value of the MBRC statistic when

> calculating the cost of performing the

> full tablescan (or index fast full scan). The whole

> thing is an example of writing that will not help the

> novice reader understand how things work - and I'm

> not sure that the note is correct in its description

> of how the optimizer responds to incomplete system

> stats.

>

> It's an interesting point that from 10.2 onwards the

> MBRC is supposed to default to 8 if you

> haven't set the

> db_file_mulitblock_read_count.

> (Technically, it's the

> _db_file_optimizer_read_count that

> defaults to 8 and then the MBRC copies

> the parameter).

>

> You might wonder if this is a setting that is

> actually dependent on the block_size.

> The last time I checked on a system with 16K blocks,

> though, it wasn't different - the value really does

> seem to be fixed at 8. This means that if you've

> allowed the

> db_file_mulitblock_read_count and

> system statistics to default, the optimizer will

> favour tablescans and index fast full scans in a

> system with a larger block size. (I mentioned in my

> book how moving an object to a tablespace with a

> different block size can cause a change in execution

> plan - this is another aspect of the same sort of

> thing).

>

> Regards

> Jonathan Lewis

> http://jonathanlewis.wordpress.com

> http://www.jlcomp.demon.co.uk

Very clearly explained, thank you.

This is one of the few times that I was more confused about Oracle's behavior after reading Oracle's documentation.

I will re-read the section of your book that you described. One of the interesting items found in Oracle 11g's 10046 trace

file is that it now includes the calculated cost in the STAT lines (shown in the TKPROF output in the Row Source Operation

lines). Greg Rahn's test case in this thread is a bit interesting, where the TKPROF output is showing the calculated cost for

the different block sizes.

Size Phy Rds Cost Phy Rds/Cost Delta from Smaller Block Size

 16 55822 21480 0.384794525 0.108514666

 8 113157 31263 0.276279859 0.054253488

 4 232603 51644 0.222026371 0.027129618

 2 493333 96149 0.194896753

The above shows that Oracle's calculated cost decreases with the larger block sizes in the test case, and there is a

mathematical pattern to the cost shown in the last column of the above table.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Richard

Foote

Re: Larger vs. Small data block

Posted: Jun 5, 2008 7:24 AM in response to: Greg Rahn
Reply

Posts: 279

From: Canberra Australia

Registered: 12/13/99
Hi Greg

Excellent post, well done !!

It beautifully demonstrates how Oracle actually works, without the need for a complex, production environment to hide behind.

Let's just hope those that really really really need to read it actually do so, let's hope they can actually understand it

and let's hope the penny finally, at long long last actually drops.

One lives in hope ...

Cheers

Richard Foote

http://richardfoote.wordpress.com/

oradba

Posts: 5,591

From: Germany

Registered: 9/15/00

Re: Larger vs. Small data block

Posted: Jun 5, 2008 7:25 AM in response to: Faust
Reply

... although it's more a discussion among philosophers ... ;-)

Werner

Faust

Posts: 797

From: Middle Europe

Registered: 1/1/07

Re: Larger vs. Small data block

Posted: Jun 5, 2008 7:32 AM in response to: oradba
Reply

> ... although it's more a discussion among philosophers ... ;-)

Yeah, also because of that I like it so much...

It's so much to learn here in this thread, not only about Oracle technology -> also about people who working or teaching

Oracle everyday :-)

Billy

Verreynne

Posts: 6,628

Registered: 5/27/99

Re: Larger vs. Small data block

Posted: Jun 5, 2008 8:14 AM in response to: Greg Rahn
Reply

Echoing Richard here... thanks Greg. Really an easy to read, consume and understand posting that illustrates the point very

well.

Re: Larger vs. Small data block

Posted: Jun 5, 2008 8:33 AM in response to: Greg Rahn
Reply

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 5, 2008 9:37 AM in response to:
Reply

It's a shame when Greg previously demonstrated a similar example to you, you didn't get it:

http://forums.oracle.com/forums/thread.jspa?messageID=2176190�

If you've "observed increased contention with high DML on large blocksizes" why then do you still insist that the first thing

an experience DBA should do is rebuild all indexes in the largest block size" ? Ummmm ...

How about the week after when you're not so swamped you produce a similar demo that shows and just as clearly explains why

multi sized blocks are so beneficial and why indexes should be rebuilt in the largest block size ...

Now you know how easy it is to demonstrate a point without the need for a large production system :)

Cheers

Richard Foote

http://richardfoote.wordpress.com/

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 5, 2008 9:46 AM in response to: Greg Rahn
Reply

Thanks Greg. Your results look much like mine. I have never seen consistent, repeatable, differences except in highly

contrived tests.

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 5, 2008 9:47 AM in response to: Greg Rahn
Reply

Greg,

Nice work. I would have expected some thing similar from the Lab Experts. Let me quote my words from my original posting

>>The example i give again is identical database in same server (created using same script).

>>All parameters same except for db_block_size. I did clean restart of both database and server

>>(no excuse for data cache or network traffic or bang on server) and executed the following sql

>>set in the server.

Now let me quote your words from the posting

>>To demonstrate my claim, I will create an experiment (test case). I am also going to add to

>>my claim that no matter what the blocksize, I can get the same read performance

>>create tablespace tpcds_8k datafile '+GROUP1' size 1500m;

>>create tablespace tpcds_2k datafile '+GROUP1' size 1500m blocksize 2k;

>>create tablespace tpcds_4k datafile '+GROUP1' size 1500m blocksize 4k;

>>create tablespace tpcds_16k datafile '+GROUP1' size 1500m blocksize 16k;

In your case you have a single database (with 8k block size?) and you demonstrated the query

performance against 4 tablespace with different blocks.Do you actually think you have done correct test?.

I would like to remind the basic question, Comparing query Performance in Two identical Database

with different block size . Not against a single database with multiple block size tablespaces

Since you have taken the effort to demonstrate a test case, i would like to encourage you to show

us execution result in separate database (Identical) with block size 8k and 16k.

Regards,

sp009

Faust

Posts: 797

From: Middle Europe

Registered: 1/1/07

Re: Larger vs. Small data block

Posted: Jun 5, 2008 9:58 AM in response to: Richard Foote
Reply

>

> It's a shame when Greg previously demonstrated a

> similar example to you, you didn't get it:

>

> http://forums.oracle.com/forums/thread.jspa?messageID=

> 2176190?

>

> If you've "observed increased contention with high

> DML on large blocksizes" why then do you still

> insist that the first thing an experience DBA should

> do is rebuild all indexes in the largest block size"

> ? Ummmm ...

>

> How about the week after when you're not so swamped

> you produce a similar demo that shows and just as

> clearly explains why multi sized blocks are so

> beneficial and why indexes should be rebuilt in the

> largest block size ...

>

> Now you know how easy it is to demonstrate a point

> without the need for a large production system :)

>

> Cheers

>

> Richard Foote

> http://richardfoote.wordpress.com/

Hi Richard,

with this post you just "pour oil on fire"...

Nothing positive and constructive, I would say.

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 5, 2008 10:05 AM in response to: Faust
Reply

Hi Faust

On the contrary.

If can only explain why he still insists on a course of action that contradicts with his own observations and quotes from
other sources and if he can actually demonstrate why such advice is valid and beneficial, then it would be a very positive

and constructive outcome.

Cheers

Richard Foote

http://richardfoote.wordpress.com/

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 5, 2008 10:19 AM in response to: Greg Rahn
Reply

Greg,

Nice work. I would have expected some thing similar from the Lab Experts. Let me

quote my words from my original posting

>>The example i give again is identical database in same server (created using same script).

>>All parameters same except for db_block_size. I did clean restart of both database and server

>>(no excuse for data cache or network traffic or bang on server) and executed the following sql

>>set in the server.

Now let me quote your words from the posting

>>To demonstrate my claim, I will create an experiment (test case). I am also going to add to

>>my claim that no matter what the blocksize, I can get the same read performance

>>create tablespace tpcds_8k datafile '+GROUP1' size 1500m;

>>create tablespace tpcds_2k datafile '+GROUP1' size 1500m blocksize 2k;

>>create tablespace tpcds_4k datafile '+GROUP1' size 1500m blocksize 4k;

>>create tablespace tpcds_16k datafile '+GROUP1' size 1500m blocksize 16k;

In your case you have a single database (with 8k block size?) and you demonstrated the query

performance against 4 tablespace with different blocks.Do you actually think you have done correct test?.
I would like to remind the basic question, Comparing query Performance in Two identical Database

with different block size . Not against a single database with multiple block size tablespaces

Since you have taken the effort to demonstrate a test case, i would like to encourage you to show

us execution result in separate database (Identical, Server too) with block size 8k and 16k.

If you want, consider db_file_mutiblock_read_count too, so that db_block_size * db_file_mutiblock_read_count
will be same on both database

Regards,

sp009

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 5, 2008 10:40 AM in response to: Richard Foote
Reply

Mr.Richard, Mr.Damorgan,

I have only one advice for you. Let me quote an analogy. that may be simple

You spend $5.98 for a meal and cashier says, don't have 2 cents change for $6. You will say "that's nothing for me, forget

it".

Consider same routine for an year and see how much you neglected like "that's nothing for me, forget it"

Now consider 5000 people show the same attitude for a year and see how much accumulated like "that’s nothing for me forget

it".

I think now you will get the point. It doesn't matter how much expert you are in a subject or not. You should have an open

mind to

listen from all. That makes big difference

sp009

Faust

Posts: 797

From: Middle Europe

Registered: 1/1/07

Re: Larger vs. Small data block

Posted: Jun 5, 2008 10:48 AM in response to: Richard Foote
Reply

> If can only explain why he ...

> ...

> can actually demonstrate why ...

And you believe that with words like:

"...you didn't get it..."

or

"... Now you know how easy it is to..."

you will push or anybody else to explain and/or demonstrate?

That's not good and positive pedagogy from my point of view.

BTW, also with children I will never go in that direction.

Cheers!

mpowel01

Posts: 2,840

Registered: 12/8/98

Re: Larger vs. Small data block

Posted: Jun 5, 2008 10:50 AM in response to: sp009
Reply

sp009, Greg test was designed to demonstrate the effect of changing the block size. Separate or same database really does not

matter. When you use separate databases it is very difficult to verify, show, or prove that there are no differences in

database parameter, hardware, disk, etc.... Greg's test was excellent for the intended prupose.

IMHO -- Mark D Powell --

Faust

Posts: 797

From: Middle Europe

Registered: 1/1/07

Re: Larger vs. Small data block

Posted: Jun 5, 2008 10:55 AM in response to: mpowel01
Reply

> sp009, Greg test was designed to demonstrate the

> effect of changing the block size. Separate or same

> database really does not matter. When you use

> separate databases it is very difficult to verify,

> show, or prove that there are no differences in

> database parameter, hardware, disk, etc.... Greg's

> test was excellent for the intended prupose.

>

> IMHO -- Mark D Powell --

Right one for you sp009!

And please don't post your words as code - it can be misleading for the newbies...

;-)

Cheers!

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 5, 2008 11:00 AM in response to: Faust
Reply

Hi Faust

One lives in hope Faust, one lives in hope ...

Cheers

Richard Foote

http://richardfoote.wordpress.com/

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 5, 2008 11:01 AM in response to: mpowel01
Reply

> sp009, Greg test was designed to demonstrate the

> effect of changing the block size. Separate or same

> database really does not matter. When you use

> separate databases it is very difficult to verify,

> show, or prove that there are no differences in

> database parameter, hardware, disk, etc.... Greg's

> test was excellent for the intended prupose.

>

> IMHO -- Mark D Powell --

That makes a big difference, b'cos Server process the I/O request is

same in all 4 queries and the disk stripe depth/width is same, even though

the tablespace of different block size in 4 sql process.

Server process calculates the I/O request size based on db_block_size and

db_file_multiblock_read_count, not based on tablespace block size.

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 5, 2008 11:45 AM in response to: sp009
Reply

Could you elaborate on these points so I can further understand the details of your claims?

> That makes a big difference, b'cos Server process the I/O request is same in all 4 queries

How is the I/O request the same? In what cases would it be different? How would it be a "big difference"?

> and the disk stripe depth/width is same, even though the tablespace of different block size in 4 sql process.

In order to limit variables, I will use the same ASM disk group so it has the exact same characteristics for both databases.

> Server process calculates the I/O request size based on db_block_size and

> db_file_multiblock_read_count, not based on tablespace block size.

Exactly how do you believe the I/O request size is calculated?

If you believe that it is based on the database db_block_size and not the given tablespace db_block_size, I think I

demonstrated this to not be the case with my first experiment:

2k block * 512 MBRC = 1MB

4k block * 256 MBRC = 1MB

8k block * 128 MBRC = 1MB

16k block * 64 MBRC = 1MB

But I'll gladly run another experiment with a 8k and 16k database (not just tablespace) in my Oracle Laboratory and I'll post

the results.

--

Regards,

Greg Rahn

http://structureddata.org

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 5, 2008 12:16 PM in response to: Greg Rahn
Reply

Greg,

> But I'll gladly run another experiment with a 8k and

> 16k database (not just tablespace) in my

> Oracle Laboratory and I'll post the results.

I would encourage you create two identical brand new database on same server or

identical server (same configuration) one with 8k*8k (standard) and other

with 16k*4k so that db_block_size * db_file_multiblock_read_count

will have same value in both database (as requested by Jonathan Louis)

Please test the sqls with couple of million rows, since few hundreds of rows will

not make any difference. Please remember, the debate here is performance difference

in low-concurrency DW database applications with high volume of I/O request

Also please trace the sqls to catch the wait events (again as requested by Jonathan Louis)

Alter Session Set Events '10046 trace name context forever, level 8';

Sqls.............

Sqls.............

Alter Session Set Events '10046 trace name context off';

I will do the same test very soon, whenever time permits

Thank you for taking the effort. After all i am not here to prove "I am Right" but to find the truth.

Regards,

sp009

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 5, 2008 4:38 PM in response to: sp009
Reply

I have built a db with a 16k block size and re-run the experiment.

SQL> show parameter db_block_size

NAME TYPE VALUE

------------------------------------ ----------- ------------------------------

db_block_size integer 16384

BEGIN_TIMESTAMP QUERY_FILE ELAPSED_SECONDS ROW_COUNT

----------------- -------------------------------- --------------- ----------

20080605 11:32:32 q.sql 124.086276 7197670

/* q.sql */

select * from web_returns

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 71978 23.85 24.84 55822 127217 0 7197670

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 71980 23.85 24.84 55822 127217 0 7197670

Misses in library cache during parse: 0

Optimizer mode: ALL_ROWS

Parsing user id: 28

Rows Row Source Operation

------- ---

7197670 TABLE ACCESS FULL WEB_RETURNS (cr=127217 pr=55822 pw=55822 time=82535 us cost=21400 size=770150690 card=7197670)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 71980 0.00 0.09

 SQL*Net message from client 71980 0.00 93.20

 db file sequential read 1 0.00 0.00

 direct path read 981 0.01 0.22

 SQL*Net more data to client 71976 0.00 1.79

**

WAIT #2: nam='direct path read' ela= 35 file number=4 first dba=53824 block cnt=64 obj#=11899 tim=1212690614763620

WAIT #2: nam='direct path read' ela= 27 file number=4 first dba=53888 block cnt=64 obj#=11899 tim=1212690614904103

WAIT #2: nam='direct path read' ela= 26 file number=4 first dba=53952 block cnt=64 obj#=11899 tim=1212690615043605

WAIT #2: nam='direct path read' ela= 38 file number=4 first dba=54016 block cnt=64 obj#=11899 tim=1212690615183407

WAIT #2: nam='direct path read' ela= 25 file number=4 first dba=54080 block cnt=64 obj#=11899 tim=1212690615324141

WAIT #2: nam='direct path read' ela= 32 file number=4 first dba=54144 block cnt=64 obj#=11899 tim=1212690615464674

WAIT #2: nam='direct path read' ela= 36 file number=4 first dba=54208 block cnt=64 obj#=11899 tim=1212690615605495

As you can see, the number of physical reads (55822) are exactly the same in a 16k tablespace whether the db_block_size is 8k

or 16k. And again, the read I/O size is 1MB (16k block * 64 MBRC). The elapsed times are also close enough to be the same

(125s vs. 124s)

Hopefully this demonstrates that either way, the results are the same.

I could care less about who is right and who is wrong. After all, when one is wrong and understands why, one learns something.

This is what is important. I hope these experiments help you and others understand that is it the size of the I/O that

matters, not the block size.

--

Regards,

Greg Rahn

http://structureddata.org

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 5, 2008 5:21 PM in response to:
Reply

>

> And let's not forgent the benefits of space. For

> random OLTP of 80 bytes rows (where the likelthood or

> re-using the data block is small), a 2k blocksize

> wastes less buffer cache.

>

That was one of the points made in the Metalink note about different block sizes that was clearly not thought through

properly.

If the likelihood of reusing the data block is small then the number of disk I/Os made against that object will be the same

whether the block is a 2K block or an 8K block. So changing the block size doesn't change the I/O load and response time, what

you have to do is protect the main cache, which you can do by using the RECYCLE cache for the object.

You could argue that there is a time-saving in reading a 2K block instead of an 8K block - after all, it takes a smaller

fraction of a rotation to collect 2K. However there are various mechanical reasons on modern hardware why small variations in

read size are largely irrelevant - for example, I believe EMC's have a cache granularity of 32K, which means a read is not

complete until 32K of data has been copied from the disk to the EMC cache.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 5, 2008 5:49 PM in response to: Jonathan Lewis
Reply

> sp009,

>

> Much better; however, given the interest in

> performance, it would have been helpful to run the

> trace at level 8 and including the wait summary so

> that we could see where the wait time went - the

> number, type, and average length of the waits could

> be very informative.

>

> If you feel like running the test again, please

> remember the significance of the

> db_file_multiblock_read_count.

>

Jonathan,

OK, i created 2 brand new identical database in same server with db_block_count

8k and 16k. All other parameters are same for both database. Let oracle decide the MBRC.

I have only 2 custom tables Employee and Department with 5m records. No index nothing.

Completed all Oracle recommended check list after creating the new databases.

SQL> connect / as sysdba

Connected.

SQL> Select *

 2 From v$version

 3 /

BANNER

--

Oracle Database 10g Enterprise Edition Release 10.2.0.4.0 - Prod

PL/SQL Release 10.2.0.4.0 - Production

CORE 10.2.0.4.0 Production

TNS for 32-bit Windows: Version 10.2.0.4.0 - Production

NLSRTL Version 10.2.0.4.0 - Production

SQL> Select Name

 2 From v$database

 3 /

NAME

DWDB

SQL> Select Name, Value

 2 From v$parameter

 3 Where Name = 'db_block_size'

 4 /

NAME

--

VALUE

--

db_block_size

16384

SQL> Select Count(1)

 2 From employee emp, department dept

 3 Where emp.dept_code = dept.dept_code

 4 /

 COUNT(1)

 5000000

SQL> Alter Session Set Events '10046 trace name context forever, level 8'

 2 /

Session altered.

SQL> Alter Session Set Sql_trace=True

 2 /

Session altered.

SQL> Select Count(1)

 2 From employee emp, department dept

 3 Where emp.dept_code = dept.dept_code

 4 /

 COUNT(1)

 5000000

SQL> Alter Session Set Sql_trace=False

 2 /

Session altered.

SQL> Alter Session Set Events '10046 trace name context off'

 2 /

Session altered.

SQL> spool off;

++

SQL> connect / as sysdba

Connected.

SQL> Select *

 2 From v$version

 3 /

BANNER

--

Oracle Database 10g Enterprise Edition Release 10.2.0.4.0 - Prod

PL/SQL Release 10.2.0.4.0 - Production

CORE 10.2.0.4.0 Production

TNS for 32-bit Windows: Version 10.2.0.4.0 - Production

NLSRTL Version 10.2.0.4.0 - Production

SQL> Select Name

 2 From v$database

 3 /

NAME

TPDB

SQL> Select Name, Value

 2 From v$parameter

 3 Where Name = 'db_block_size'

 4 /

NAME

--

VALUE

--

db_block_size

8192

SQL> Select Count(1)

 2 From employee emp, department dept

 3 Where emp.dept_code = dept.dept_code

 4 /

 COUNT(1)

 5000000

SQL> Alter Session Set Events '10046 trace name context forever, level 8'

 2 /

Session altered.

SQL> Alter Session Set Sql_trace=True

 2 /

Session altered.

SQL> Select Count(1)

 2 From employee emp, department dept

 3 Where emp.dept_code = dept.dept_code

 4 /

 COUNT(1)

 5000000

SQL> Alter Session Set Sql_trace=False

 2 /

Session altered.

SQL> Alter Session Set Events '10046 trace name context off'

 2 /

Session altered.

SQL> spool off;

+++

TKPROF RESULT

DATABASE: DWDB

TKPROF: Release 10.2.0.4.0 - Production on Thu Jun 5 16:30:22 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Trace file: dwdb_ora_2328.trc

Sort options: default

**

count = number of times OCI procedure was executed

cpu = cpu time in seconds executing

elapsed = elapsed time in seconds executing

disk = number of physical reads of buffers from disk

query = number of buffers gotten for consistent read

current = number of buffers gotten in current mode (usually for update)

rows = number of rows processed by the fetch or execute call

**

Alter Session Set Sql_trace=True

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 2 0.00 0.00 0 0 0 0

Misses in library cache during parse: 0

Parsing user id: SYS

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 SQL*Net message from client 2 0.00 0.00

**

Select Count(1)

 From employee emp, department dept

 Where emp.dept_code = dept.dept_code

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 12.82 24.39 18435 13900 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 12.82 24.39 18435 13900 0 1

Misses in library cache during parse: 0

Optimizer mode: FIRST_ROWS

Parsing user id: SYS

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=13900 pr=18435 pw=7560 time=24395502 us)

5000000 HASH JOIN (cr=13900 pr=18435 pw=7560 time=21546079 us)

5000000 TABLE ACCESS FULL EMPLOYEE (cr=6095 pr=3133 pw=0 time=67 us)

5000000 TABLE ACCESS FULL DEPARTMENT (cr=7805 pr=7735 pw=0 time=243 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 direct path write temp 1080 0.00 0.00

 db file scattered read 1367 0.01 0.25

 direct path read temp 1081 0.00 0.01

 SQL*Net message from client 2 0.00 0.00

**

Alter Session Set Sql_trace=False

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 2 0.00 0.00 0 0 0 0

Misses in library cache during parse: 0

Parsing user id: SYS

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 1 0.00 0.00

 SQL*Net message from client 1 1.29 1.29

**

Alter Session Set Events '10046 trace name context off'

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 2 0.00 0.00 0 0 0 0

Misses in library cache during parse: 0

Parsing user id: SYS

**

OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 4 0.00 0.00 0 0 0 0

Execute 4 0.00 0.00 0 0 0 0

Fetch 2 12.82 24.39 18435 13900 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 10 12.82 24.39 18435 13900 0 1

Misses in library cache during parse: 0

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 5 0.00 0.00

 SQL*Net message from client 5 1.29 1.30

 direct path write temp 1080 0.00 0.00

 db file scattered read 1367 0.01 0.25

 direct path read temp 1081 0.00 0.01

OVERALL TOTALS FOR ALL RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 0 0.00 0.00 0 0 0 0

Execute 0 0.00 0.00 0 0 0 0

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 0 0.00 0.00 0 0 0 0

Misses in library cache during parse: 0

 4 user SQL statements in session.

 0 internal SQL statements in session.

 4 SQL statements in session.

**

Trace file: dwdb_ora_2328.trc

Trace file compatibility: 10.01.00

Sort options: default

 1 session in tracefile.

 4 user SQL statements in trace file.

 0 internal SQL statements in trace file.

 4 SQL statements in trace file.

 4 unique SQL statements in trace file.

 3596 lines in trace file.

 25 elapsed seconds in trace file.

++

DATABASE: TPDB

TKPROF: Release 10.2.0.4.0 - Production on Thu Jun 5 16:31:09 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Trace file: tpdb_ora_272.trc

Sort options: default

**

count = number of times OCI procedure was executed

cpu = cpu time in seconds executing

elapsed = elapsed time in seconds executing

disk = number of physical reads of buffers from disk

query = number of buffers gotten for consistent read

current = number of buffers gotten in current mode (usually for update)

rows = number of rows processed by the fetch or execute call

**

Alter Session Set Sql_trace=True

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 2 0.00 0.00 0 0 0 0

Misses in library cache during parse: 0

Parsing user id: SYS

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 SQL*Net message from client 2 0.00 0.00

**

Select Count(1)

 From employee emp, department dept

 Where emp.dept_code = dept.dept_code

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 13.20 27.61 34226 27954 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 13.20 27.61 34226 27954 0 1

Misses in library cache during parse: 0

Optimizer mode: FIRST_ROWS

Parsing user id: SYS

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=27954 pr=34226 pw=15285 time=27619188 us)

5000000 HASH JOIN (cr=27954 pr=34226 pw=15285 time=34005775 us)

5000000 TABLE ACCESS FULL EMPLOYEE (cr=12254 pr=3327 pw=0 time=70 us)

5000000 TABLE ACCESS FULL DEPARTMENT (cr=15700 pr=15599 pw=0 time=260 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 direct path write temp 1019 0.00 0.00

 db file scattered read 2366 0.02 0.21

 db file sequential read 1 0.00 0.00

 direct path read temp 1020 0.00 0.01

 SQL*Net message from client 2 0.00 0.00

**

Alter Session Set Sql_trace=False

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 2 0.00 0.00 0 0 0 0

Misses in library cache during parse: 0

Parsing user id: SYS

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 1 0.00 0.00

 SQL*Net message from client 1 1.35 1.35

**

Alter Session Set Events '10046 trace name context off'

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 2 0.00 0.00 0 0 0 0

Misses in library cache during parse: 0

Parsing user id: SYS

**

OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 4 0.00 0.00 0 0 0 0

Execute 4 0.00 0.00 0 0 0 0

Fetch 2 13.20 27.61 34226 27954 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 10 13.20 27.61 34226 27954 0 1

Misses in library cache during parse: 0

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 5 0.00 0.00

 SQL*Net message from client 5 1.35 1.36

 direct path write temp 1019 0.00 0.00

 db file scattered read 2366 0.02 0.21

 db file sequential read 1 0.00 0.00

 direct path read temp 1020 0.00 0.01

OVERALL TOTALS FOR ALL RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 0 0.00 0.00 0 0 0 0

Execute 0 0.00 0.00 0 0 0 0

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 0 0.00 0.00 0 0 0 0

Misses in library cache during parse: 0

 4 user SQL statements in session.

 0 internal SQL statements in session.

 4 SQL statements in session.

**

Trace file: tpdb_ora_272.trc

Trace file compatibility: 10.01.00

Sort options: default

 1 session in tracefile.

 4 user SQL statements in trace file.

 0 internal SQL statements in trace file.

 4 SQL statements in trace file.

 4 unique SQL statements in trace file.

 4474 lines in trace file.

 29 elapsed seconds in trace file.

I would love to see an expert explanation from you for the above cpu/cost difference

in both database.

Regards,

sp009

> Regards

> Jonathan Lewis

> http://jonathanlewis.wordpress.com

> http://www.jlcomp.demon.co.uk

jgarry

Posts: 128

Re: Larger vs. Small data block

Posted: Jun 5, 2008 6:29 PM in response to: sp009
Reply

From: Just outside of

beautiful Vista, California

Registered: 7/20/98

What is your db_cache_size?

Could you display the contents of v$bh after each test?

>call count cpu elapsed disk query current rows

>------- ------ -------- ---------- ---------- ---------- ---------- ----------

>Fetch 2 12.82 24.39 18435 13900 0 1

>Fetch 2 13.20 27.61 34226 27954 0 1

I'm wondering if what we are seeing is the result of extra cpu overhead of Oracle having to manage twice as many blocks for

the same data in the 16K v. 8K tests. Could the disk requests be misleading because some are satisfied without real disk

reads? Isn't the query reasonable to be double because it has to look at twice as many blocks?

>Event waited on Times Max. Wait Total Waited

>-- Waited ---------- ------------

>db file scattered read 1367 0.01 0.25

>db file scattered read 2366 0.02 0.21

So we wait twice as many times, but the total is less...

on a busy system, the more often you wait, the more cpu you use in the trade-off, the more likely everyone else is going to

make you wait even more. Right?

It depends...

Hemant

K

Chitale

Posts: 1,259

Registered: 11/6/98

Re: Larger vs. Small data block

Posted: Jun 5, 2008 9:12 PM in response to: mpowel01
Reply

>> When you use separate databases it is very difficult to verify, show, or prove that there are no differences in database

parameter, hardware, disk, etc....

If both the databases are on the same server (and only one database is up

at any time) what would be the difference between these tests and seperate

tablespaces with different block sizes ?

A single database with multiple block size tablespaces does have seperate

datafiles (therefore on seperate locations "on disk") and seperate caches.

BUT they share the same system and undo tablespace (both of which

have only one, default, block size). They also share the same TEMPORARY

tablespace, when running in the same schema (hmm... I wonder if anyone

tries changing the block size for the TEMPORARY Tablespace).

On the other hand, with two databases with *different* db_block_sizes,

even system, undo and temp have different block sizes. In my opinion,

sp009 is conducting a valid "TEST FOR BLOCK SIZE".

The two tests (multiple block sizes in one tablespace V different

default db_block_size) ARE Different. But the second Test is a valid test

for the hypothesis that changing the Block Size might/can make a difference.

Hemant

K

Chitale

Posts: 1,259

Registered: 11/6/98

Re: Larger vs. Small data block

Posted: Jun 5, 2008 9:31 PM in response to: sp009
Reply

The EMPLOYEE Table seems to be smaller than the DEPARTMENT table ??

What are their sizes ? Is it because DEPARTMENT has a much larger

AVG_ROW_LENGTH ?

In the 16K database DWDB :

5000000 TABLE ACCESS FULL EMPLOYEE (cr=6095 pr=3133 pw=0 time=67 us)5000000 TABLE ACCESS FULL DEPARTMENT (cr=7805

pr=7735 pw=0 time=243 us)

In the 8K database TPDB :

5000000 TABLE ACCESS FULL EMPLOYEE (cr=12254 pr=3327 pw=0 time=70 us)5000000 TABLE ACCESS FULL DEPARTMENT (cr=15700

pr=15599 pw=0 time=260 us)

As expected, the 16K blocks are half as many as the 8K blocks. But the

number of EMPLOYEE blocks not in the db_cache are much lower in TPDB

(8KB). It would seem that most of the EMPLOYEE blocks were present in

the db_cache in TPDB but not as many (proportionally !) in DWDB.

(Also, it seems as if DEPARTMENT is larger than EMPLOYEE -- possibly

larger AVG_ROW_LENGTH).

HOWEVER, the Gain seems to be in the HASH JOIN :

In DWDB :

5000000 HASH JOIN (cr=13900 pr=18435 pw=7560 time=21546079 us

In TPDB :

5000000 HASH JOIN (cr=27954 pr=34226 pw=15285 time=34005775 us)

Even if we account for the possibility that the Timings for the FullTableScans

might be part of the total time for the Hash Join and therefore deduct them,

the Hash Join was much faster in DWDB.

Either the memory allocated for the Hash Join in DWDB was larger

(depending on PGA_AGGREGATE_TARGET / WORKAREA_SIZE_POLICY ,

SORT_AREA_SIZE, HASH_AREA_SIZE) and/or the Hash Join overflows

to/from disk performed better in DWDB.

Presumably the TEMPORARY Tablespace also had the same db_block_size

(I haven't heard of anyone changing the TEMPORARY Tablespace block size

or know if it is possible).

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 6, 2008 4:08 AM in response to: sp009
Reply

I've cut and pasted the central parts of your trace files:

16K Block size:

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 12.82 24.39 18435 13900 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 12.82 24.39 18435 13900 0 1

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=13900 pr=18435 pw=7560 time=24395502 us)

5000000 HASH JOIN (cr=13900 pr=18435 pw=7560 time=21546079 us)

5000000 TABLE ACCESS FULL EMPLOYEE (cr=6095 pr=3133 pw=0 time=67 us)

5000000 TABLE ACCESS FULL DEPARTMENT (cr=7805 pr=7735 pw=0 time=243 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 direct path write temp 1080 0.00 0.00

 db file scattered read 1367 0.01 0.25

 direct path read temp 1081 0.00 0.01

 SQL*Net message from client 2 0.00 0.00

8K Block size

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 13.20 27.61 34226 27954 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 13.20 27.61 34226 27954 0 1

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=27954 pr=34226 pw=15285 time=27619188 us)

5000000 HASH JOIN (cr=27954 pr=34226 pw=15285 time=34005775 us)

5000000 TABLE ACCESS FULL EMPLOYEE (cr=12254 pr=3327 pw=0 time=70 us)

5000000 TABLE ACCESS FULL DEPARTMENT (cr=15700 pr=15599 pw=0 time=260 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 direct path write temp 1019 0.00 0.00

 db file scattered read 2366 0.02 0.21

 db file sequential read 1 0.00 0.00

 direct path read temp 1020 0.00 0.01

 SQL*Net message from client 2 0.00 0.00

Points to notice:

The "lost time" in these reports far outweighs the differences that you are worried about. The 8K block results show a 14

second difference between CPU time and elapsed time, but the wait summary accounts for less than one second of that time. It's

not sensible to worry about 0.38 CPU seconds difference, and 3.22 seconds elapsed time difference when the measurement error

is 14 seconds, as the error may be hiding the fact that Oracle was not actually doing the same thing in both cases.

The employee table is the same size in both tests - but the number of blocks read to scan the table is also (nearly) the same

in both cases: so you must have had roughly 50% of the blocks in cache before starting the 8K test - you have to ask yourself

how this could have affected results. You might want to try issuing "alter system flush buffer_cache" before each test run.

The pre-caching of the employee table may have limited the size and affected the relative efficiency of the reads in the case

of the 8K block rest (hence the increased of the number of read requests) - on the other hand if you sum the "pr=" figures for

the tablescans and divide by the value of "db file scattered read" the answer comes very close to 8 blocks per read in both

cases. So I think it's more likely that you've left a hard coded limit on the db_file_multiblock_read_count. In an earlier

post you said something about wanting to test the effect of changing the block size in a data warehouse that was running with

low concurrency and large queries - you haven't configured this database in an appropriate fashion for such a data warehouse

if you've set the db_file_multiblock_read_count to 8.

The number of direct path writes is nearly the same on the two tests - although the number of blocks written is roughly

doubled. This shows that the mechanics of the hash join behaved in very similar ways on both systems. We can infer that the

number of partitions used for the hash table, and the chunk (slot) size were the same in both cases. (Note, by the way, that

this means the unit I/O for the direct path write was kept constant - doubling the block count as the block size halved).

A thought about the lost time - it looks as if your tables may have been cached in a local file-system cache (unless there's a

big problem with timing on your platform with 10.2.0.4). It's possible that the lost time is spent somehow at the operating

system level due to odd effects of Oracle prefetching and pseudo-asynchronous I/O. (This isn't a single CPU / single core

machine, is it ?)

A final point to consider - your employee rows have an average row length of about 10 bytes, and your department rows have an

average row length of about 25. This isn't particularly representative of a data warehouse - so you have to ask yourself if

the test will exaggerate the difference in performance that would normally appear, or would it tend to hide the difference ?

By comparison, Greg Rahn's example used 7M rows of about 140 bytes totalling something 1GB of data, rather than 5M rows in

50M. Whatever results you finally get with this data set, they may simply represent an extreme special case.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 6, 2008 9:26 AM in response to: Jonathan Lewis
Reply

Jonathan,

Thanks for having a look in to that. I didn't convince my self with your answer. Never mind.

>>Whatever results you finally get with this data set, they may simply represent an extreme special case.

I have done this test with two identical database in same server with different block size.

I wish i can show the tkprof of some of the long run queries in my production and test database

(identical server, windows 2003/64 with 16k and 8k block size and data nearly same).

But the policy doesn't allow me to do that.

I would encourage every one to test the case your self and see the result. Here i am

talking about only DW applications with large volume of I/O requests. Thanks to every

one for their contributions

Regards,

sp009

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 6, 2008 11:42 AM in response to: sp009
Reply

> Thanks for having a look in to that. I didn't

> convince my self with your answer. Never mind.

Fair enough - but at least we've had a discussion which has highliighted the importance of constructuing experiments to test a

hypothesis, and given other people the chance to see how careful you have to be to design the test properly/

> I wish i can show the tkprof of some of the long run

> queries in my production and test database

> (identical server, windows 2003/64 with 16k and 8k

> block size and data nearly same).

> But the policy doesn't allow me to do that.

I've never been convinced that this makes it impossible to share performance data without compromising business intelligence.

After all, if you want to examine the I/O pattern for a query you can cut one statement out of a tkprof file, delete the SQL,

and change the names of the tables and indexes in the rowsource output in a consistent fashion.

You might be able so show an example of that sort of thing to your governance officer and get clearance to show it on the

forum.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 6, 2008 2:36 PM in response to: Jonathan Lewis
Reply

Jonathan,

I will definitely try to get tkprof of one my long running query in DW application (process 30m rows) and the same in the test

server.

Thanks,

sp009

Boochi

Posts: 87

From: USA

Registered: 11/23/07

Re: Larger vs. Small data block

Posted: Jun 6, 2008 2:52 PM in response to: user619401
Reply

Hi OP,

What did you understand from these many replies?.

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 6, 2008 4:29 PM in response to: Boochi
Reply

I would say, for db_block_size "It Depends". Like may other intelligent software, in many areas, Oracle too doesn't play by

rule. That's my experience and understanding. I am sure like me, there will be many customers thinking the same. Debates on

these areas may go till 20g and beyond and can never stop.

sp009

Re: Larger vs. Small data block

Posted: Jun 6, 2008 5:09 PM in response to: Jonathan Lewis
Reply

Re: Larger vs. Small data block

Posted: Jun 6, 2008 5:12 PM in response to: sp009
Reply

Madrid

Posts: 7,145

From: Mexico City

Registered: 3/8/99

Re: Larger vs. Small data block

Posted: Jun 6, 2008 6:09 PM in response to: Madrid
Reply

> Daniel,

>

> I don't agree nor disagree, I am just looking for the

> truth. You said you have some lab tests, If you

> don't mind I would like to take a look at your

> research results. Have you published them in

> internet? Are they available?

>

> Regards.

Daniel Morgan,

Let me insist on this point, if you have your research results, do you mind publishing them?

Regards

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 6, 2008 9:56 PM in response to:
Reply

Same old examples as have already been addressed many times, such as here:

http://richardfoote.wordpress.com/2008/03/20/store-indexes-in-a-larger-block-tablespace-the-multiblock-read-myth-part-ii-the-

fly/#comment-605

But just to hightlight a couple of them again:

The OTN link you mentioned, is that Is that the same Santosh Kumar thread where he only asks the question “Is it true” based a

question on a AskTom thread where an anonymous Russian makes unsubstantiated claims on the benefits of bigger index block
sizes (dismissed by Tom), where you, yourself admit “Yeah, I redacted that one” when I highlighted to you Santosh himself

never actually made the claim himself !! :

Is that the same M.J Schwenger who in the same forum thread you got his quote from asks whether or not using multiple

blocksizes is actually a good idea or not !!

Is that the same Balkrishan Mittal who in the very same forum discussion as M. J. Schwenger warns him not to use a larger

block size as it caused him negative results with 100% CPU consumption and was forced within days to put the indexes back in a

smaller block size !!

Is that the very same David Aldridge you banned from your forum because he actually disagreed with you that the 6% improvement

had anything to do with different block sizes: http://oraclesponge.blogspot.com/2005_04_01_archive.html

Finally, why are anonymous Russians, a simple demo such as David's (who disagrees with you), etc. "credible Oracle shop" but

not other demos which disagree with your conclusions ?

http://richardfoote.wordpress.com/2008/03/31/larger-block-index-tablespace-and-small-index-scans-performance-improvement-let-

down/

Cheers

Richard Foote

http://richardfoote.wordpress.com/

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 6, 2008 10:24 PM in response to:
Reply

(Snip)

> You keep dissing the tests here, but I don't see you

> enlightening us with a valid test.

>

> Why is that?

>

> As my personal debunker, I expect a test showing the

> performance differences with different blocksizes

> (measuring throughput and response time).

I just completed a test case here with 2 identical new database instances, one with a default block size of 8KB, and the

second with a default block size of 16KB. The test case, including all 50,000,000+ rows of data in the test tables, should

allow the results to be very easily reproduced on any Oracle platform without risk of exposing company secrets. The results

were surprising, at least not exactly what I was expecting. I did not test just a simple 2 table join.

First, the database initialization parameters used to create each database instance:

#INITIALIZATION PARAMETERS 8KB BLOCK

background_core_dump=partial

cluster_database=FALSE

compatible=10.2.0.2.0

control_files=("C:\oracle\OraData\TEST8\ctlTEST801.ctl", "C:\oracle\flash_recovery_area\TEST8\ctlTEST802.ctl")

control_file_record_keep_time=7

cursor_sharing=EXACT

cursor_space_for_time=true

db_block_size=8192

db_cache_advice=on

db_block_checking=false

db_block_checksum=typical

db_domain=world

db_files=200

db_flashback_retention_target=1440

db_name=TEST8

db_recovery_file_dest_size=14000M

db_recovery_file_dest=C:\oracle\flash_recovery_area

db_unique_name=TEST8

db_writer_processes=1

global_names=false

instance_name=TEST8

java_pool_size=1M

job_queue_processes=10

log_archive_format=arc%s_%r.%t

log_buffer=1048576

log_checkpoint_interval=65536

log_checkpoint_timeout=3600

log_checkpoints_to_alert=false

max_dump_file_size=202400

nls_language=american

nls_territory=america

O7_DICTIONARY_ACCESSIBILITY=TRUE

open_cursors=1000

open_links=4

optimizer_dynamic_sampling=2

optimizer_features_enable=10.2.0.2

optimizer_index_caching=0

optimizer_index_cost_adj=100

optimizer_mode=ALL_ROWS

pga_aggregate_target=300M

plsql_code_type=INTERPRETED

processes=210

query_rewrite_enabled=FALSE

query_rewrite_integrity=TRUSTED

recyclebin=ON

remote_login_passwordfile=EXCLUSIVE

service_names=TEST8

sessions=236

session_cached_cursors=200

sga_max_size=1100M

sga_target=900M

star_transformation_enabled=FALSE

statistics_level=typical

timed_statistics=true

transactions=259

transactions_per_rollback_segment=5

undo_management=AUTO

undo_retention=1800

undo_tablespace=ROLLBACK_DATA

workarea_size_policy=auto

background_dump_dest=C:\oracle\product\10.2.0\admin\TEST8\bdump

core_dump_dest=C:\oracle\product\10.2.0\admin\TEST8\cdump

user_dump_dest=C:\oracle\product\10.2.0\admin\TEST8\udump

utl_file_dir=C:\oracle\product\10.2.0\admin\TEST8\udump

#INITIALIZATION PARAMETER MODIFICATIONS FOR 16KB BLOCK

control_files=("C:\oracle\OraData\test16\ctltest1601.ctl", "C:\oracle\flash_recovery_area\test16\ctltest1602.ctl")

db_block_size=16384

background_dump_dest=C:\oracle\product\10.2.0\admin\test16\bdump

core_dump_dest=C:\oracle\product\10.2.0\admin\test16\cdump

user_dump_dest=C:\oracle\product\10.2.0\admin\test16\udump

utl_file_dir=C:\oracle\product\10.2.0\admin\test16\udump

#CREATE DATABASE COMMAND FOR 8KB BLOCK SIZE:

CREATE DATABASE "TEST8"

MAXINSTANCES 8

MAXLOGHISTORY 1

MAXLOGFILES 20

MAXLOGMEMBERS 3

MAXDATAFILES 100

DATAFILE 'c:\oracle\oradata\TEST8\SystemTEST801.dbf' SIZE 700M AUTOEXTEND ON NEXT 20M MAXSIZE UNLIMITED EXTENT MANAGEMENT

LOCAL

SYSAUX DATAFILE 'c:\oracle\oradata\TEST8\SysauxTEST801.dbf' SIZE 300M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED

SMALLFILE DEFAULT TEMPORARY TABLESPACE TEMPORARY_DATA1 TEMPFILE 'c:\oracle\oradata\TEST8\TmpTEST801.dbf' SIZE 1024M AUTOEXTEND

ON NEXT 40M MAXSIZE 5000M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1M

SMALLFILE UNDO TABLESPACE "ROLLBACK_DATA" DATAFILE 'c:\oracle\oradata\TEST8\undotbsTEST801.dbf' SIZE 800M AUTOEXTEND ON NEXT

20M MAXSIZE UNLIMITED

CHARACTER SET WE8MSWIN1252

NATIONAL CHARACTER SET AL16UTF16

LOGFILE GROUP 1 ('c:\oracle\oradata\TEST8\RedoTEST801.log') SIZE 512M,

GROUP 2 ('c:\oracle\oradata\TEST8\RedoTEST802.log') SIZE 512M,

GROUP 3 ('c:\oracle\oradata\TEST8\RedoTEST803.log') SIZE 512M,

GROUP 4 ('c:\oracle\oradata\TEST8\RedoTEST804.log') SIZE 512M,

GROUP 5 ('c:\oracle\oradata\TEST8\RedoTEST805.log') SIZE 512M,

GROUP 6 ('c:\oracle\oradata\TEST8\RedoTEST806.log') SIZE 512M

USER SYS IDENTIFIED BY "&&sysPassword" USER SYSTEM IDENTIFIED BY "&&systemPassword";

CREATE SMALLFILE TABLESPACE "USER_DATA" LOGGING DATAFILE 'C:\oracle\oradata\TEST8\usrTEST801.dbf' SIZE 2000M AUTOEXTEND ON

NEXT 100M MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

#CREATE DATABASE COMMAND FOR 16KB BLOCK SIZE:

CREATE DATABASE "test16"

MAXINSTANCES 8

MAXLOGHISTORY 1

MAXLOGFILES 20

MAXLOGMEMBERS 3

MAXDATAFILES 100

DATAFILE 'c:\oracle\oradata\test16\Systemtest1601.dbf' SIZE 700M AUTOEXTEND ON NEXT 20M MAXSIZE UNLIMITED EXTENT MANAGEMENT

LOCAL

SYSAUX DATAFILE 'c:\oracle\oradata\test16\Sysauxtest1601.dbf' SIZE 300M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED

SMALLFILE DEFAULT TEMPORARY TABLESPACE TEMPORARY_DATA1 TEMPFILE 'c:\oracle\oradata\test16\Tmptest1601.dbf' SIZE 1024M

AUTOEXTEND ON NEXT 40M MAXSIZE 5000M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1M

SMALLFILE UNDO TABLESPACE "ROLLBACK_DATA" DATAFILE 'c:\oracle\oradata\test16\undotbstest1601.dbf' SIZE 800M AUTOEXTEND ON NEXT

20M MAXSIZE UNLIMITED

CHARACTER SET WE8MSWIN1252

NATIONAL CHARACTER SET AL16UTF16

LOGFILE GROUP 1 ('c:\oracle\oradata\test16\Redotest1601.log') SIZE 512M,

GROUP 2 ('c:\oracle\oradata\test16\Redotest1602.log') SIZE 512M,

GROUP 3 ('c:\oracle\oradata\test16\Redotest1603.log') SIZE 512M,

GROUP 4 ('c:\oracle\oradata\test16\Redotest1604.log') SIZE 512M,

GROUP 5 ('c:\oracle\oradata\test16\Redotest1605.log') SIZE 512M,

GROUP 6 ('c:\oracle\oradata\test16\Redotest1606.log') SIZE 512M

USER SYS IDENTIFIED BY "&&sysPassword" USER SYSTEM IDENTIFIED BY "&&systemPassword";

CREATE SMALLFILE TABLESPACE "USER_DATA" LOGGING DATAFILE 'C:\oracle\oradata\test16\usrtest1601.dbf' SIZE 2000M AUTOEXTEND ON

NEXT 100M MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

The tests:

#######################

#TEST RUN 1 AFTER A RESTART, ONLY 16KB DTAABASE INSTANCE STARTED

ALTER SYSTEM FLUSH BUFFER_CACHE;

ALTER SYSTEM FLUSH BUFFER_CACHE;

spool c:\test16.txt

set autotrace on

set timing on

SELECT

 COUNT(*)

FROM

 ALL_OBJECTS;

CREATE TABLE T1 AS

SELECT

 A.*,

 RN

FROM

 (SELECT

 *

 FROM

 ALL_OBJECTS A

 WHERE

 ROWNUM<=10000) A,

 (SELECT

 ROWNUM RN

 FROM

 DUAL

 CONNECT BY

 LEVEL<=5000);

COMMIT;

ALTER SYSTEM FLUSH BUFFER_CACHE;

ALTER SYSTEM FLUSH BUFFER_CACHE;

CREATE INDEX T1_IND1 ON T1(OWNER,OBJECT_NAME,SUBOBJECT_NAME,RN);

CREATE TABLE T2 AS

SELECT

 *

FROM

 T1

WHERE

 1=2;

CREATE INDEX T2_IND1 ON T2(OWNER,OBJECT_NAME,SUBOBJECT_NAME,RN);

ALTER SYSTEM FLUSH BUFFER_CACHE;

ALTER SYSTEM FLUSH BUFFER_CACHE;

INSERT INTO T2

SELECT

 *

FROM

 T1

WHERE

 RN<=100;

COMMIT;

ALTER SYSTEM FLUSH BUFFER_CACHE;

ALTER SYSTEM FLUSH BUFFER_CACHE;

ALTER SESSION SET EVENTS '10046 TRACE NAME CONTEXT FOREVER, LEVEL 8';

SELECT

 *

FROM

 T1

WHERE

 STATUS='NONE';

SELECT

 COUNT(*)

FROM

 T2;

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1;

ALTER SESSION SET EVENTS '10046 TRACE NAME CONTEXT OFF';

SPOOL OFF

ALTER SYSTEM FLUSH BUFFER_CACHE;

ALTER SYSTEM FLUSH BUFFER_CACHE;

#######################

#TEST RUN 2 IN SECOND SESSION WITH 10046 TRACE LEVEL 8, 10053 TRACE LEVEL 1, SESSION LEVEL STATISTICS_LEVEL=ALL, DBMS_XPLAN

ALL STATS LAST, ONLY 16KB DTAABASE INSTANCE STARTED

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1;

#######################

#TEST RUN 3 AFTER A RESTART, ONLY 16KB DTAABASE INSTANCE STARTED

spool c:\test16-2.txt

set autotrace on

set timing on

EXEC DBMS_STATS.GATHER_TABLE_STATS(OWNNAME=>USER,TABNAME=>'T1',CASCADE=>TRUE);

EXEC DBMS_STATS.GATHER_TABLE_STATS(OWNNAME=>USER,TABNAME=>'T1',CASCADE=>TRUE);

ALTER SYSTEM FLUSH BUFFER_CACHE;

ALTER SYSTEM FLUSH BUFFER_CACHE;

ALTER SESSION SET EVENTS '10046 TRACE NAME CONTEXT FOREVER, LEVEL 8';

SELECT DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

WHERE

 STATUS='NONE';

ALTER SESSION SET EVENTS '10046 TRACE NAME CONTEXT OFF';

SELECT

 TABLE_NAME,

 NUM_ROWS,

 BLOCKS,

 AVG_ROW_LEN

FROM

 USER_TABLES

WHERE

 TABLE_NAME IN ('T1','T2');

SELECT

 INDEX_NAME,

 BLEVEL,

 LEAF_BLOCKS,

 DISTINCT_KEYS,

 AVG_LEAF_BLOCKS_PER_KEY,

 AVG_DATA_BLOCKS_PER_KEY,

 CLUSTERING_FACTOR

FROM

 USER_INDEXES

WHERE

 TABLE_NAME IN ('T1','T2');

SPOOL OFF

#######################

#######################

#TEST RUN 4 AFTER A RESTART, ONLY 8KB DTAABASE INSTANCE STARTED

#SAME AS TEST RUN 1, EXCEPT SPOOL TO c:\test8.txt

#######################

#TEST RUN 5 IN SECOND SESSION WITH 10046 TRACE LEVEL 8, 10053 TRACE LEVEL 1, SESSION LEVEL STATISTICS_LEVEL=ALL, DBMS_XPLAN

ALL STATS LAST, ONLY 8KB DTAABASE INSTANCE STARTED

#SAME AS TEST RUN 2

#######################

#TEST RUN 6 AFTER A RESTART, ONLY 8KB DTAABASE INSTANCE STARTED

#SAME AS TEST RUN 3

#######################

The initial results will be posted next, and analysis of the 10046 trace files will follow later.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 6, 2008 10:44 PM in response to: Charles Hooper
Reply

During this test, system statistics were not collected, and the database instances were not archiving redo logs. Tested on

Oracle 10.2.0.2 on a low end 32 bit Windows box with 3.8GHz P4, 2GB of RAM, and 2 hard drives in RAID 0.

On the 16KB block size database, Oracle automatically set the DB_FILE_MULTIBLOCK_READ_COUNT=64

On the 8KB block size database, Oracle automatically set the DB_FILE_MULTIBLOCK_READ_COUNT=128

The above surprised me a bit.

################# RESULTS #################

#TEST RUN 1 16KB

 COUNT(*)

 11073

Elapsed: 00:00:00.68

Execution Plan...

Statistics

--

 8 recursive calls

 0 db block gets

 19328 consistent gets

 190 physical reads

 0 redo size

 413 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 1 rows processed

Table created.

Elapsed: 00:01:48.15

Commit complete.

Elapsed: 00:00:00.00

System altered.

Elapsed: 00:00:04.50

System altered.

Elapsed: 00:00:00.03

Index created.

Elapsed: 00:10:30.96

Table created.

Elapsed: 00:00:01.50

Index created.

Elapsed: 00:00:00.00

System altered.

Elapsed: 00:00:01.62

System altered.

Elapsed: 00:00:00.03

1000000 rows created.

Elapsed: 00:02:08.28

Execution Plan

--

Plan hash value: 3617692013

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 751K| 101M| 122K (2)| 00:28:37 |

|* 1 | TABLE ACCESS FULL| T1 | 751K| 101M| 122K (2)| 00:28:37 |

--

Predicate Information (identified by operation id):

 1 - filter("RN"<=100)

Note

 - dynamic sampling used for this statement

Statistics

--

 6531 recursive calls

 2490348 db block gets

 352150 consistent gets

 321601 physical reads

 444972176 redo size

 681 bytes sent via SQL*Net to client

 583 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 2 sorts (memory)

 0 sorts (disk)

 1000000 rows processed

Commit complete.

Elapsed: 00:00:00.00

System altered.

Elapsed: 00:00:10.60

System altered.

Elapsed: 00:00:00.00

Session altered.

Elapsed: 00:00:00.06

no rows selected

Elapsed: 00:01:12.87

Execution Plan

--

Plan hash value: 3617692013

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 3544 | 487K| 122K (2)| 00:28:33 |

|* 1 | TABLE ACCESS FULL| T1 | 3544 | 487K| 122K (2)| 00:28:33 |

--

Predicate Information (identified by operation id):

 1 - filter("STATUS"='NONE')

Note

 - dynamic sampling used for this statement

Statistics

--

 5 recursive calls

 0 db block gets

 321695 consistent gets

 321569 physical reads

 0 redo size

 1047 bytes sent via SQL*Net to client

 370 bytes received via SQL*Net from client

 1 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 0 rows processed

 COUNT(*)

 1000000

Elapsed: 00:00:02.37

Execution Plan

--

Plan hash value: 1385691034

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 1230 (1)| 00:00:18 |

| 1 | SORT AGGREGATE | | 1 | | |

| 2 | INDEX FAST FULL SCAN| T2_IND1 | 968K| 1230 (1)| 00:00:18 |

Note

 - dynamic sampling used for this statement

Statistics

--

 32 recursive calls

 3 db block gets

 6812 consistent gets

 4294 physical reads

 242044 redo size

 411 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 1 rows processed

OWNER OBJECT_NAME

------------------------------ ------------------------------

SUBOBJECT_NAME

------------------------------ ...

9454 rows selected.

Elapsed: 00:01:28.62

Execution Plan

--

Plan hash value: 1118578911

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 54M| 2666M| 574K (1)| 02:14:00 |

| 1 | SORT UNIQUE NOSORT| | 54M| 2666M| 574K (1)| 02:14:00 |

| 2 | INDEX FULL SCAN | T1_IND1 | 54M| 2666M| 136K (1)| 00:31:51 |

--

Note

 - dynamic sampling used for this statement

Statistics

--

 5 recursive calls

 0 db block gets

 135802 consistent gets

 135073 physical reads

 0 redo size

 299135 bytes sent via SQL*Net to client

 7311 bytes received via SQL*Net from client

 632 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 9454 rows processed

Session altered.

Elapsed: 00:00:00.00

#TEST RUN 2 16KB

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1;

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads |

| 1 | SORT UNIQUE NOSORT| | 1 | 54M| 9454 |00:02:19.11 | 135K| 135K|

| 2 | INDEX FULL SCAN | T1_IND1 | 1 | 54M| 50M|00:01:40.05 | 135K| 135K|

Note

 - dynamic sampling used for this statement

#TEST RUN 3 16KB

PL/SQL procedure successfully completed.

Elapsed: 00:02:30.67

PL/SQL procedure successfully completed.

Elapsed: 00:02:30.07

System altered.

Elapsed: 00:00:00.04

System altered.

Elapsed: 00:00:00.01

Session altered.

Elapsed: 00:00:00.01

no rows selected

Elapsed: 00:01:15.48

Execution Plan

--

Plan hash value: 2134347679

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 32 | 122K (2)| 00:28:32 |

| 1 | HASH UNIQUE | | 1 | 32 | 122K (2)| 00:28:32 |

|* 2 | TABLE ACCESS FULL| T1 | 1 | 32 | 122K (2)| 00:28:32 |

Predicate Information (identified by operation id):

 2 - filter("STATUS"='NONE')

Statistics

--

 1 recursive calls

 0 db block gets

 321597 consistent gets

 321569 physical reads

 0 redo size

 399 bytes sent via SQL*Net to client

 370 bytes received via SQL*Net from client

 1 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 0 rows processed

Session altered.

Elapsed: 00:00:00.00

TABLE_NAME NUM_ROWS BLOCKS AVG_ROW_LEN

------------------------------ ---------- ---------- -----------

T1 50050157 322128 88

T2

INDEX_NAME BLEVEL LEAF_BLOCKS DISTINCT_KEYS AVG_LEAF_BLOCKS_PER_KEY AVG_DATA_BLOCKS_PER_KEY

CLUSTERING_FACTOR

------------------------------ ---------- ----------- ------------- ----------------------- ----------------------- ----------

T1_IND1 2 138623 48307975 1 1

49273616

T2_IND1

#TEST RUN 4 8KB

 COUNT(*)

 11073

Elapsed: 00:00:00.62

Execution Plan...

Statistics

--

 641 recursive calls

 0 db block gets

 19570 consistent gets

 380 physical reads

 116 redo size

 413 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 25 sorts (memory)

 0 sorts (disk)

 1 rows processed

Table created.

Elapsed: 00:01:41.48

Commit complete.

Elapsed: 00:00:00.00

System altered.

Elapsed: 00:00:02.31

System altered.

Elapsed: 00:00:00.00

Index created.

Elapsed: 00:08:28.31

Table created.

Elapsed: 00:00:01.01

Index created.

Elapsed: 00:00:00.01

System altered.

Elapsed: 00:00:00.81

System altered.

Elapsed: 00:00:00.01

1000000 rows created.

Elapsed: 00:01:53.59

Execution Plan

--

Plan hash value: 3617692013

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 776K| 104M| 178K (2)| 00:35:46 |

|* 1 | TABLE ACCESS FULL| T1 | 776K| 104M| 178K (2)| 00:35:46 |

--

Predicate Information (identified by operation id):

 1 - filter("RN"<=100)

Note

 - dynamic sampling used for this statement

Statistics

--

 7290 recursive calls

 2854734 db block gets

 712468 consistent gets

 651602 physical reads

 469393664 redo size

 681 bytes sent via SQL*Net to client

 583 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 6 sorts (memory)

 0 sorts (disk)

 1000000 rows processed

Commit complete.

Elapsed: 00:00:00.00

System altered.

Elapsed: 00:00:17.45

System altered.

Elapsed: 00:00:00.01

Session altered.

Elapsed: 00:00:00.03

no rows selected

Elapsed: 00:01:01.21

Execution Plan

--

Plan hash value: 3617692013

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 7180 | 988K| 178K (1)| 00:35:43 |

|* 1 | TABLE ACCESS FULL| T1 | 7180 | 988K| 178K (1)| 00:35:43 |

--

Predicate Information (identified by operation id):

 1 - filter("STATUS"='NONE')

Note

 - dynamic sampling used for this statement

Statistics

--

 5 recursive calls

 0 db block gets

 651592 consistent gets

 651470 physical reads

 0 redo size

 1047 bytes sent via SQL*Net to client

 370 bytes received via SQL*Net from client

 1 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 0 rows processed

 COUNT(*)

 1000000

Elapsed: 00:00:02.57

Execution Plan

--

Plan hash value: 1385691034

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 1863 (1)| 00:00:23 |

| 1 | SORT AGGREGATE | | 1 | | |

| 2 | INDEX FAST FULL SCAN| T2_IND1 | 796K| 1863 (1)| 00:00:23 |

Note

 - dynamic sampling used for this statement

Statistics

--

 32 recursive calls

 3 db block gets

 14148 consistent gets

 7745 physical reads

 505960 redo size

 411 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 1 rows processed

OWNER OBJECT_NAME

------------------------------ ------------------------------

SUBOBJECT_NAME

------------------------------ ...

9454 rows selected.

Elapsed: 00:01:43.59

Execution Plan

--

Plan hash value: 1118578911

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 50M| 2459M| 921K (1)| 03:04:19 |

| 1 | SORT UNIQUE NOSORT| | 50M| 2459M| 921K (1)| 03:04:19 |

| 2 | INDEX FULL SCAN | T1_IND1 | 50M| 2459M| 276K (1)| 00:55:24 |

--

Note

 - dynamic sampling used for this statement

Statistics

--

 5 recursive calls

 0 db block gets

 274741 consistent gets

 274363 physical reads

 0 redo size

 299090 bytes sent via SQL*Net to client

 7311 bytes received via SQL*Net from client

 632 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 9454 rows processed

Session altered.

Elapsed: 00:00:00.00

#TEST RUN 5 8KB

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads |

| 1 | SORT UNIQUE NOSORT| | 1 | 50M| 9454 |00:02:38.02 | 274K| 274K|

| 2 | INDEX FULL SCAN | T1_IND1 | 1 | 50M| 50M|00:01:40.08 | 274K| 274K|

Note

 - dynamic sampling used for this statement

#TEST RUN 6 8KB

PL/SQL procedure successfully completed.

Elapsed: 00:02:12.53

PL/SQL procedure successfully completed.

Elapsed: 00:02:01.07

System altered.

Elapsed: 00:00:00.06

System altered.

Elapsed: 00:00:00.03

Session altered.

Elapsed: 00:00:00.04

no rows selected

Elapsed: 00:01:00.17

Execution Plan

--

Plan hash value: 2134347679

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 33 | 178K (1)| 00:35:43 |

| 1 | HASH UNIQUE | | 1 | 33 | 178K (1)| 00:35:43 |

|* 2 | TABLE ACCESS FULL| T1 | 1 | 33 | 178K (1)| 00:35:43 |

Predicate Information (identified by operation id):

 2 - filter("STATUS"='NONE')

Statistics

--

 1 recursive calls

 0 db block gets

 651498 consistent gets

 651470 physical reads

 0 redo size

 399 bytes sent via SQL*Net to client

 370 bytes received via SQL*Net from client

 1 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 0 rows processed

Session altered.

Elapsed: 00:00:00.00

TABLE_NAME NUM_ROWS BLOCKS AVG_ROW_LEN

------------------------------ ---------- ---------- -----------

T1 50017435 652594 88

T2

INDEX_NAME BLEVEL LEAF_BLOCKS DISTINCT_KEYS AVG_LEAF_BLOCKS_PER_KEY AVG_DATA_BLOCKS_PER_KEY

CLUSTERING_FACTOR

------------------------------ ---------- ----------- ------------- ----------------------- ----------------------- ----------

T1_IND1 3 288099 50108357 1 1

51187710

T2_IND1

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 7, 2008 12:02 AM in response to: Charles Hooper
Reply

TKPROF output with direct comparision between the 16KB and 8KB block size runs:

Test 1 16KB:

**

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.02 1 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 632 30.57 85.72 135072 135703 0 9454

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 634 30.57 85.74 135073 135705 0 9454

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 9454 SORT UNIQUE NOSORT (cr=135703 pr=135072 pw=0 time=85245437 us)

50000000 INDEX FULL SCAN T1_IND1 (cr=135703 pr=135072 pw=0 time=100008470 us)(object id 11767)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 632 0.00 0.00

 db file sequential read 135072 0.04 56.86

 SQL*Net message from client 632 0.01 2.79

**

Test 4 8KB:

**

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.02 1 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 632 34.12 100.63 274233 274646 0 9454

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 634 34.12 100.65 274234 274648 0 9454

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 9454 SORT UNIQUE NOSORT (cr=274646 pr=274233 pw=0 time=111328538 us)

50000000 INDEX FULL SCAN T1_IND1 (cr=274646 pr=274233 pw=0 time=100020266 us)(object id 11767)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 632 0.00 0.00

 db file scattered read 6952 0.02 6.44

 db file sequential read 225942 0.03 63.97

 SQL*Net message from client 632 0.02 2.78

**

Test 1 16KB:

**

SELECT

 *

FROM

 T1

WHERE

 STATUS='NONE'

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.02 1 1 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 10.56 71.82 320429 321597 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 3 10.56 71.84 320430 321598 0 0

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 0 TABLE ACCESS FULL T1 (cr=321597 pr=320429 pw=0 time=71828655 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 db file sequential read 1 0.01 0.01

 SQL*Net message to client 1 0.00 0.00

 db file scattered read 5085 0.05 62.14

 SQL*Net message from client 1 0.00 0.00

10046 Trace file:

PARSE #14:c=109375,e=1035690,p=1140,cr=98,cu=0,mis=1,r=0,dep=0,og=1,tim=2106644614

EXEC #14:c=0,e=28,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,tim=2106644794

WAIT #14: nam='SQL*Net message to client' ela= 3 driver id=1413697536 #bytes=1 p3=0 obj#=11766 tim=2106644834

WAIT #14: nam='db file scattered read' ela= 22393 file#=4 block#=8 blocks=5 obj#=11766 tim=2106667326

WAIT #14: nam='db file scattered read' ela= 1186 file#=4 block#=13 blocks=4 obj#=11766 tim=2106668693

WAIT #14: nam='db file scattered read' ela= 2310 file#=4 block#=17 blocks=4 obj#=11766 tim=2106671140

WAIT #14: nam='db file scattered read' ela= 6560 file#=4 block#=22 blocks=3 obj#=11766 tim=2106677823

WAIT #14: nam='db file scattered read' ela= 594 file#=4 block#=25 blocks=4 obj#=11766 tim=2106678522

WAIT #14: nam='db file scattered read' ela= 11402 file#=4 block#=29 blocks=4 obj#=11766 tim=2106690064

WAIT #14: nam='db file scattered read' ela= 599 file#=4 block#=33 blocks=4 obj#=11766 tim=2106690801

WAIT #14: nam='db file scattered read' ela= 17327 file#=4 block#=38 blocks=3 obj#=11766 tim=2106708379

WAIT #14: nam='db file scattered read' ela= 585 file#=4 block#=41 blocks=4 obj#=11766 tim=2106709105

WAIT #14: nam='db file scattered read' ela= 640 file#=4 block#=45 blocks=4 obj#=11766 tim=2106709873

WAIT #14: nam='db file scattered read' ela= 585 file#=4 block#=49 blocks=4 obj#=11766 tim=2106710597

WAIT #14: nam='db file scattered read' ela= 604 file#=4 block#=54 blocks=3 obj#=11766 tim=2106711317

WAIT #14: nam='db file scattered read' ela= 613 file#=4 block#=57 blocks=4 obj#=11766 tim=2106712028

WAIT #14: nam='db file scattered read' ela= 665 file#=4 block#=61 blocks=4 obj#=11766 tim=2106712816

WAIT #14: nam='db file scattered read' ela= 574 file#=4 block#=65 blocks=4 obj#=11766 tim=2106713517

WAIT #14: nam='db file scattered read' ela= 26634 file#=4 block#=70 blocks=63 obj#=11766 tim=2106740385

WAIT #14: nam='db file scattered read' ela= 20449 file#=4 block#=134 blocks=63 obj#=11766 tim=2106762748

WAIT #14: nam='db file scattered read' ela= 26011 file#=4 block#=198 blocks=63 obj#=11766 tim=2106790618

WAIT #14: nam='db file scattered read' ela= 28744 file#=4 block#=262 blocks=63 obj#=11766 tim=2106821296

WAIT #14: nam='db file scattered read' ela= 26001 file#=4 block#=326 blocks=63 obj#=11766 tim=2106849172

WAIT #14: nam='db file scattered read' ela= 30236 file#=4 block#=390 blocks=63 obj#=11766 tim=2106881297

...

WAIT #14: nam='db file scattered read' ela= 13668 file#=4 block#=321737 blocks=64 obj#=11766 tim=2178408686

WAIT #14: nam='db file scattered read' ela= 10157 file#=4 block#=321801 blocks=64 obj#=11766 tim=2178420732

WAIT #14: nam='db file scattered read' ela= 10221 file#=4 block#=321865 blocks=64 obj#=11766 tim=2178432836

WAIT #14: nam='db file scattered read' ela= 11175 file#=4 block#=321929 blocks=64 obj#=11766 tim=2178445891

WAIT #14: nam='db file scattered read' ela= 10204 file#=4 block#=321993 blocks=64 obj#=11766 tim=2178457994

WAIT #14: nam='db file scattered read' ela= 10203 file#=4 block#=322057 blocks=64 obj#=11766 tim=2178470070

WAIT #14: nam='db file scattered read' ela= 1341 file#=4 block#=322121 blocks=12 obj#=11766 tim=2178473204

FETCH #14:c=10562500,e=71828658,p=320429,cr=321597,cu=0,mis=0,r=0,dep=0,og=1,tim=2178473533

WAIT #14: nam='SQL*Net message from client' ela= 634 driver id=1413697536 #bytes=1 p3=0 obj#=11766 tim=2178474254

STAT #14 id=1 cnt=0 pid=0 pos=1 obj=11766 op='TABLE ACCESS FULL T1 (cr=321597 pr=320429 pw=0 time=71828655 us)'

**

Test 4 8KB:

**

SELECT

 *

FROM

 T1

WHERE

 STATUS='NONE'

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.01 1 1 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 12.28 60.24 648725 651498 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 3 12.28 60.26 648726 651499 0 0

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 0 TABLE ACCESS FULL T1 (cr=651498 pr=648725 pw=0 time=60248818 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 db file sequential read 2 0.01 0.01

 SQL*Net message to client 1 0.00 0.00

 db file scattered read 5140 0.05 48.58

 SQL*Net message from client 1 0.01 0.01

10046 Trace file:

PARSE #13:c=62500,e=960065,p=2745,cr=94,cu=0,mis=1,r=0,dep=0,og=1,tim=999346046

EXEC #13:c=0,e=28,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,tim=999346223

WAIT #13: nam='SQL*Net message to client' ela= 2 driver id=1413697536 #bytes=1 p3=0 obj#=11766 tim=999346263

WAIT #13: nam='db file scattered read' ela= 14292 file#=4 block#=12 blocks=5 obj#=11766 tim=999360658

WAIT #13: nam='db file scattered read' ela= 910 file#=4 block#=17 blocks=8 obj#=11766 tim=999361715

WAIT #13: nam='db file scattered read' ela= 18546 file#=4 block#=26 blocks=7 obj#=11766 tim=999380403

WAIT #13: nam='db file scattered read' ela= 935 file#=4 block#=33 blocks=8 obj#=11766 tim=999381468

WAIT #13: nam='db file scattered read' ela= 554 file#=4 block#=42 blocks=7 obj#=11766 tim=999382162

WAIT #13: nam='db file scattered read' ela= 623 file#=4 block#=49 blocks=8 obj#=11766 tim=999382913

WAIT #13: nam='db file scattered read' ela= 644 file#=4 block#=58 blocks=7 obj#=11766 tim=999383699

WAIT #13: nam='db file scattered read' ela= 680 file#=4 block#=65 blocks=8 obj#=11766 tim=999384505

WAIT #13: nam='db file scattered read' ela= 553 file#=4 block#=74 blocks=7 obj#=11766 tim=999385198

WAIT #13: nam='db file scattered read' ela= 626 file#=4 block#=81 blocks=8 obj#=11766 tim=999385950

WAIT #13: nam='db file scattered read' ela= 569 file#=4 block#=90 blocks=7 obj#=11766 tim=999386662

WAIT #13: nam='db file scattered read' ela= 677 file#=4 block#=97 blocks=8 obj#=11766 tim=999387466

WAIT #13: nam='db file scattered read' ela= 587 file#=4 block#=106 blocks=7 obj#=11766 tim=999388196

WAIT #13: nam='db file scattered read' ela= 634 file#=4 block#=113 blocks=8 obj#=11766 tim=999388956

WAIT #13: nam='db file scattered read' ela= 651 file#=4 block#=122 blocks=7 obj#=11766 tim=999389744

WAIT #13: nam='db file scattered read' ela= 696 file#=4 block#=129 blocks=8 obj#=11766 tim=999390576

WAIT #13: nam='db file scattered read' ela= 13029 file#=4 block#=139 blocks=126 obj#=11766 tim=999403957

WAIT #13: nam='db file scattered read' ela= 27025 file#=4 block#=267 blocks=126 obj#=11766 tim=999433238

...

WAIT #13: nam='db file scattered read' ela= 9012 file#=4 block#=652177 blocks=128 obj#=11766 tim=1059567202

WAIT #13: nam='db file scattered read' ela= 8046 file#=4 block#=652305 blocks=128 obj#=11766 tim=1059577523

WAIT #13: nam='db file scattered read' ela= 10406 file#=4 block#=652433 blocks=128 obj#=11766 tim=1059590304

WAIT #13: nam='db file scattered read' ela= 2113 file#=4 block#=652561 blocks=42 obj#=11766 tim=1059594505

FETCH #13:c=12281250,e=60248822,p=648725,cr=651498,cu=0,mis=0,r=0,dep=0,og=1,tim=1059595125

WAIT #13: nam='SQL*Net message from client' ela= 11442 driver id=1413697536 #bytes=1 p3=0 obj#=11766 tim=1059606663

*** SESSION ID:(215.5) 2008-06-06 20:30:27.109

STAT #13 id=1 cnt=0 pid=0 pos=1 obj=11766 op='TABLE ACCESS FULL T1 (cr=651498 pr=648725 pw=0 time=60248818 us)'

**

Test 1 16KB:

**

OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 16 0.00 0.09 5 10 0 0

Execute 17 0.00 0.11 14 136 8 8

Fetch 642 41.40 159.09 458826 463952 2 9498

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 675 41.40 159.30 458845 464098 10 9506

Misses in library cache during parse: 9

Misses in library cache during execute: 3

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 668 0.00 0.00

 SQL*Net message from client 668 0.01 2.81

 db file sequential read 135098 0.04 57.06

 db file scattered read 5152 0.05 63.23

 db file parallel read 1 0.10 0.10

**

Test 4 8KB:

**

OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 16 0.00 0.06 5 10 0 0

Execute 17 0.01 0.11 18 142 10 8

Fetch 642 46.75 162.55 929930 940075 2 9498

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 675 46.76 162.73 929953 940227 12 9506

Misses in library cache during parse: 9

Misses in library cache during execute: 3

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 668 0.00 0.00

 SQL*Net message from client 668 0.02 2.81

 db file sequential read 225979 0.03 64.20

 db file scattered read 12216 0.05 56.04

 db file parallel read 1 0.31 0.31

**

Test 1 16KB:

**

SELECT

 COUNT(*)

FROM

 T2

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.03 2 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 0.25 1.53 3325 6652 2 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 0.25 1.56 3327 6654 2 1

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=6652 pr=3325 pw=0 time=1535095 us)

1000000 INDEX FAST FULL SCAN T2_IND1 (cr=6652 pr=3325 pw=0 time=6170385 us)(object id 11769)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 db file sequential read 4 0.01 0.05

 db file parallel read 1 0.10 0.10

 db file scattered read 67 0.04 1.09

 SQL*Net message from client 2 0.00 0.00

**

Test 4 8KB:

**

SELECT

 COUNT(*)

FROM

 T2

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.01 2 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 0.34 1.66 6972 13931 2 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 0.34 1.68 6974 13933 2 1

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=13931 pr=6972 pw=0 time=1669507 us)

1000000 INDEX FAST FULL SCAN T2_IND1 (cr=13931 pr=6972 pw=0 time=2363377 us)(object id 11769)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 db file sequential read 8 0.01 0.04

 db file parallel read 1 0.31 0.31

 db file scattered read 124 0.03 1.00

 SQL*Net message from client 2 0.00 0.00

**

Test 2 16KB:

**

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.06 0.15 0 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 95 78.84 139.14 135069 135166 0 9454

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 97 78.90 139.29 135069 135168 0 9454

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 9454 SORT UNIQUE NOSORT (cr=135166 pr=135069 pw=0 time=139105318 us)

50000000 INDEX FULL SCAN T1_IND1 (cr=135166 pr=135069 pw=0 time=100048754 us)(object id 11767)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 95 0.00 0.00

 db file sequential read 135069 0.03 61.86

 SQL*Net more data to client 84 0.00 0.00

 SQL*Net message from client 95 0.11 0.16

**

Test 5 8KB:

**

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.06 0.19 2 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 95 84.10 158.06 274016 274110 0 9454

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 97 84.17 158.25 274018 274112 0 9454

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 9454 SORT UNIQUE NOSORT (cr=274110 pr=274016 pw=0 time=158024102 us)

50000000 INDEX FULL SCAN T1_IND1 (cr=274110 pr=274016 pw=0 time=100078077 us)(object id 11767)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 95 0.00 0.00

 db file sequential read 274016 0.03 77.68

 SQL*Net more data to client 84 0.00 0.00

 SQL*Net message from client 95 0.68 0.73

**

Test 3 16KB:

**

SELECT DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

WHERE

 STATUS='NONE'

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.01 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 9.75 75.28 321569 321597 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 3 9.75 75.30 321569 321597 0 0

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 0 HASH UNIQUE (cr=321597 pr=321569 pw=0 time=75282593 us)

 0 TABLE ACCESS FULL T1 (cr=321597 pr=321569 pw=0 time=75282461 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 1 0.00 0.00

 db file sequential read 1 0.01 0.01

 db file scattered read 5048 0.06 65.94

 SQL*Net message from client 1 0.03 0.03

**

Test 6 8KB:

**

SELECT DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

WHERE

 STATUS='NONE'

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.02 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 11.29 59.91 651470 651498 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 3 11.29 59.94 651470 651498 0 0

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 0 HASH UNIQUE (cr=651498 pr=651470 pw=0 time=59918740 us)

 0 TABLE ACCESS FULL T1 (cr=651498 pr=651470 pw=0 time=59918627 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 1 0.00 0.00

 db file sequential read 1 0.01 0.01

 db file scattered read 5114 0.05 48.51

 SQL*Net message from client 1 0.02 0.02

**

I also have more extensive analysis files generated from the 10046 trace files.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Aman....

Posts: 3,145

From: India

Registered: 5/21/01

Re: Larger vs. Small data block

Posted: Jun 7, 2008 12:05 AM in response to: Charles Hooper
Reply

By far ,one of the best threads !

Excellent!

Best regards

Aman....

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 7, 2008 12:38 AM in response to:
Reply

>...but I don't see you enlightening us with a valid test.

> I expect a test showing the performance differences with different blocksizes (measuring throughput and response time).

And there is not a test from you either, but perhaps there will be next week when you are less busy. =)

May I suggest not to hold others to a higher standard than you hold yourself to.

Isolated and controlled experiments are very meaningful if constructed correctly, generally as meaningful as a real-world

workload, because they are usually modeled after one. Often times it is about taking a complex problem and simplifying it so

that it can be understood, and then confirming that the observations made in isolation are also pertinent in the original

situation.

--

Regards,

Greg Rahn

http://structureddata.org

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 7, 2008 12:59 AM in response to:
Reply

> >> I didn't convince my self with your answer.

>

> Me neither

>

And this post did not convince me either as it contains nothing but hearsay. There is not a single "sighting" that contains

enough technical detail for anyone to determine its validity, including yourself.

I might suggest that you follow the scientific method in obtaining your empirical results to support your hypothesis.

http://www.sciencebuddies.org/mentoring/project_scientific_method.shtml

Once you have conducted your experiment, post your work, and we can discuss the results.

--

Regards,

Greg Rahn

http://structureddata.org

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 7, 2008 2:24 AM in response to: sp009
Reply

I think I have run an similiar experiment, taking a join into consideration. I used the same WEB_RETURNS table that I used in

my other experiments and used the following query:

select count(*)

from WEB_RETURNS a, WEB_RETURNS b

where a.WR_ORDER_NUMBER = b.WR_ORDER_NUMBER

I have run the experiment on both a 8k block table in a 8k block database and 16k block table in a 16k block database and

there appears to be no difference in elapsed times (24.59 for the 8k and 24.65 for the 16k). In each case the buffer cache is

cold. Storage is ASM. Version 11.1.0.6 on 32-bit Linux.

8k experiment

select count(*)

from WEB_RETURNS_8K a, WEB_RETURNS_8K b

where a.WR_ORDER_NUMBER = b.WR_ORDER_NUMBER

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 21.24 24.59 244014 226324 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 21.25 24.59 244014 226324 0 1

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 50

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=226324 pr=244014 pw=244014 time=0 us)

15516562 HASH JOIN (cr=226324 pr=244014 pw=244014 time=198610 us cost=74796 size=145886544 card=12157212)

7197670 TABLE ACCESS FULL WEB_RETURNS_8K (cr=113162 pr=113157 pw=113157 time=73018 us cost=31134 size=43186020

card=7197670)

7197670 TABLE ACCESS FULL WEB_RETURNS_8K (cr=113162 pr=113156 pw=113156 time=71056 us cost=31134 size=43186020

card=7197670)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 4 0.00 0.00

 SQL*Net message from client 4 0.00 0.00

 db file sequential read 1 0.01 0.01

 direct path read 1998 0.04 2.55

 direct path write temp 571 0.01 0.79

 direct path read temp 571 0.00 0.11

16k experiment

select count(*)

from WEB_RETURNS_16K a, WEB_RETURNS_16K b

where a.WR_ORDER_NUMBER = b.WR_ORDER_NUMBER

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 21.29 24.65 120793 111654 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 21.29 24.65 120793 111654 0 1

Misses in library cache during parse: 0

Optimizer mode: ALL_ROWS

Parsing user id: 28

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=111654 pr=120793 pw=120793 time=0 us)

15516562 HASH JOIN (cr=111654 pr=120793 pw=120793 time=205948 us cost=53562 size=145886544 card=12157212)

7197670 TABLE ACCESS FULL WEB_RETURNS_16K (cr=55827 pr=55822 pw=55822 time=56183 us cost=21362 size=43186020 card=7197670)

7197670 TABLE ACCESS FULL WEB_RETURNS_16K (cr=55827 pr=55821 pw=55821 time=56739 us cost=21362 size=43186020 card=7197670)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 4 0.00 0.00

 SQL*Net message from client 4 0.00 0.00

 db file sequential read 1 0.01 0.01

 direct path read 1962 0.02 2.65

 direct path write temp 610 0.00 0.69

 direct path read temp 610 0.00 0.11

--

Regards,

Greg Rahn

http://structureddata.org

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 7, 2008 4:23 AM in response to: Greg Rahn
Reply

Greg,

You do realise that this is the wrong result, so clearly you'll have to do it again !!

This time make sure you wipe the first database from the system before creating the second so that they occupy the same space

on disc. Your 16K database was probably created second, which put it nearer the middle of your disc drives - which would have

made the I/Os slower, thus increasing the CPU time spent in I/O waits.

The previous two paragraphs were intended to be ironic, by the way; but on a more serious note I'd also like to point out an

important detail relating to the general DW vs. OLTP argument about block sizing. You're using 11g, and Oracle has gone to

serial direct I/O in your case, bypassing the buffer cache - and for DW activity that may very well be the optimum strategy.

On the other hand, for some of the tests that people do (the simple count(*), for example) it is the work involved in hitting

the cache-related latches that is the most significant contributor to the CPU load.

If you disable serial reads, I think your test might just nudge the CPU balance in the direction of the 16K block size.

In passing - your tablescans are showing pw = pr every time. This looks like a bug.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Re: Larger vs. Small data block

Posted: Jun 7, 2008 8:16 AM in response to: Greg Rahn
Reply

Re: Larger vs. Small data block

Posted: Jun 7, 2008 8:39 AM in response to: Greg Rahn
Reply

Re: Larger vs. Small data block

Posted: Jun 7, 2008 8:51 AM in response to: Jonathan Lewis
Reply

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 7, 2008 9:25 AM in response to:
Reply

> Precisely! If you check my cited hyperlinks, they

> are direct reports from real, practicing Oracle

> DBA's.

>

Let's go through each of these links shall we ...

Tod Boss, who made the quote on an oracle-l list 4 years ago. Not much detail to go on really, certainly no measures of

dispersion here. Still, a quote's a quote.

M. J. Schwenger: If you read the thread carefully, begins by asking "My question is: Am I going to get better performance if I

move the indexes to the 32K blocksize as I'm expecting? " as he has doubt about it all and the answer from those helping
(including among others David Aldridge and Balkrishan Mittal, both coming up) is to focus tuning efforts elsewhere ...

Balkrishan Mittal: Recommends not moving indexes to a bigger block size because when he tried it "My servers CPU usage went to

100% (all the time). After bearing it for two days i again restored indx tablespace to 4k block size".

David Aldridge: Who disagreed with you that the 6% difference had anything to do with different block sizes and was

subsequently banned from your forum as a result - http://oraclesponge.blogspot.com/2005_04_01_archive.html

Chris Foot: Links points to an OCP Instructors Guide ???

Santosh Kumar: Didn't note anything himself but got the quote from an anonymous Russian on an AskTom thread, which even you

dismissed "Yeah, I redacted that one" on this thread

http://forums.oracle.com/forums/thread.jspa?threadID=566662&tstart=15&start=12.

Steve Taylor: Who in the same forum discussion that got David Aldridge banned where his quote originated:

http://dba.ipbhost.com/index.php?showtopic=1239&st=75

says "Now from reading the thread - some of this could have been a result of external factors such as the cache segregation...

We didn't do a great deal of granular tests just run the typical product cycle against the system, as there were just too many

queries that could be generated. But I'm thinking now would be a perfect time to revisit... Sorry if this sounds a bit vague..

and I think I've learnt a couple of valuable lessons here..."

OK, I guess it's time to make my own judgement ...

Cheers :)

Richard Foote

http://richardfoote.wordpress.com/

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 7, 2008 9:35 AM in response to:
Reply

Note the median of x or even the most frequent value of x are also possible examples of central tendency.

Note also that variance and standard deviation are also measures of dispersion.

Had to look them up of course ;)

Cheers

Richard Foote

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 7, 2008 9:55 AM in response to: Charles Hooper
Reply

Hi Charles

Nice work :)

This might sound like a somewhat silly suggestion but it would be interesting (to me anyways) if you repeated the tests on the

two different databases but with them both having the same block sizes.

What would be the differences if the block sizes were identical because the databases would still differ by having different

files on different parts of the file system.

Just a thought.

Cheers

Richard Foote

http://richardfoote.wordpress.com/

Charles

Hooper

Posts: 228

From: USA

Re: Larger vs. Small data block

Posted: Jun 7, 2008 10:35 AM in response to: Richard Foote
Reply

> Hi Charles

Registered: 1/27/08 >

> Nice work :)

>

> This might sound like a somewhat silly suggestion but

> it would be interesting (to me anyways) if you

> repeated the tests on the two different databases but

> with them both having the same block sizes.

>

> What would be the differences if the block sizes were

> identical because the databases would still differ by

> having different files on different parts of the file

> system.

>

> Just a thought.

>

> Cheers

>

> Richard Foote

> http://richardfoote.wordpress.com/

Richard,

Give me another 7 hours or so to repeat the test, and I will rebuild the 16KB database as a 8KB database to repeat the test.

For the test runs, I created the 8KB database first, rebooted, and then created the 16KB database. There were a couple

interesting results - it appears in the 10046 trace file that Oracle started the full tablescan reading just a couple blocks

at a time (64KB) and then increased to a much larger number of blocks read at the same time (1024KB). The variation in the

read times in the raw trace files possibly show the effects of native command queuing supported by the SATA drives in RAID 0

and the effects of the 8MB buffer built into the drives.

If you compare side-by-side (in a spreadsheet) the elapsed times for test run 1 with those of test run 4 (also compare the

elapsed times in test run 3 with test run6), you will see interesting results, like the following:

It required:

* Less time to build T1 in the 8KB block size: 1:41.48 vs. 00:01:48.15

* Less time to build the index on T1 in the 8KB block size: 8:28.31 vs. 10:30.96

* Less time to insert into T2 with an existing index in the 8KB block size: 1:53.59 vs. 2:08.28

* Recursive calls appears to be less time consuming in the 8KB block size: the table access full

 (STATUS='NONE') required 1:01.21 vs. 1:12.87 (the trace file seems to imply the opposite, but I excluded the

 recursive calls from the report I posted).

* Less time for statistics gathering on T1 in the 8KB block size: (2:12.53, 2:01.07) vs. (2:30.67, 2:30.07)

* ...

I forgot to mention, the test was run on a 3.5 year old Dell XPS Gen 4 system with the BIOS set to show a blue

colored neon light tube on the front of the system. I will change the color to red to see if it makes a difference - I am a

little surprised that someone did

not ask me the current color of the neon light tube, as

we know blue favors 8KB block sizes, and red favors 16KB block sizes ;-) On second thought, maybe I should set

it to yellow so that a scientific method is followed for the procedure.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Corrected word-wrapping problem

Message was edited by:

Charles Hooper

Re: Larger vs. Small data block

Posted: Jun 7, 2008 10:53 AM in response to: Charles Hooper
Reply

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 7, 2008 12:38 PM in response to: Charles Hooper
Reply

>

> On the 16KB block size database, Oracle automatically

> set the DB_FILE_MULTIBLOCK_READ_COUNT=64

>

> On the 8KB block size database, Oracle automatically

> set the DB_FILE_MULTIBLOCK_READ_COUNT=128

>

> The above surprised me a bit.

>

Charles,

Thanks for taking the time to do something like this.

The variation in db_file_multiblock_read_count is to be expected in your 10.2.0.2. Oracle tries to go for the largest possible

read, with a limit imposed by (a) the operating system - which is often 1MByte and (b) db_cache_size/sessions. Since you have

an sga_target of 900Mb and processes = 210, Oracle must have decided that 1Mb was viable.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 7, 2008 12:46 PM in response to: Charles Hooper
Reply

> There were a couple interesting

> results - it appears in the 10046 trace file that

> Oracle started the full tablescan reading just a

> couple blocks at a time (64KB) and then increased to

> a much larger number of blocks read at the same time

> (1024KB).

I'll take a guess on that - do you have system managed extent allocation ?

In clean tablespaces the first 16 would be 64KB each, the next 63 would be 1MB each, and then I can't remember the next size

up, or how many there would be.

The other variation in the sizes of the first few reads would relate to the effects of ASSM - the first few blocks of the

first extent are bitmap blocks, and then you get the odd extra bitmap block at the start of some of the later extents.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Re: Larger vs. Small data block

Posted: Jun 7, 2008 2:42 PM in response to: Madrid
Reply

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 7, 2008 5:11 PM in response to: Jonathan Lewis
Reply

> >There were a couple

> interesting

> > results - it appears in the 10046 trace file that

> > Oracle started the full tablescan reading just a

> > couple blocks at a time (64KB) and then increased

> to

> > a much larger number of blocks read at the same

> time

> > (1024KB).

>

> I'll take a guess on that - do you have system

> managed extent allocation ?

> In clean tablespaces the first 16 would be 64KB each,

> the next 63 would be 1MB each, and then I can't

> remember the next size up, or how many there would

> be.

> The other variation in the sizes of the first few

> reads would relate to the effects of ASSM - the

> first few blocks of the first extent are bitmap

> blocks, and then you get the odd extra bitmap block

> at the start of some of the later extents.

>

> Regards

> Jonathan Lewis

> http://jonathanlewis.wordpress.com

> http://www.jlcomp.demon.co.uk

Yes, the scripts that I posted set up the data file "USER_DATA" with the following:

EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO

I though that the database instance was recognizing that the operating system was efficiently reading 64KB, so it decided to

ramp up the read size to 1MB. Your explanation is very likely the cause of the read size changing. I knew that rule some time

ago, but it caught me a bit surprised as I was thinking that the maximum read size on Windows was closer to 64KB, 128KB or

256KB.

I just completed 2 more test runs and will be posting the results shortly. The original 8KB database was created first, and

the original 16KB database was built second. The original 16KB tablespace data file was specified at 2GB, and grew to

7,577,616KB. The original 8KB tablespace data file was specified at 2GB, and grew to 7,680,008KB. I left the original 8KB

database in place, but did not start it.

For tests 7, 8, 9 (8KB block size):

I used ORADIM to delete the TEST16 instance, and then I deleted all control, data, and trace files related to that database,

then I restarted the computer. Changing just the init.ora file to specify an 8KB block size, I re-ran the scripts to create

the TEST16 database instance with a 8KB block size. I then followed exactly the same procedure as before for running the same

test scripts and captured the output. Tests 7, 8, 9 relate to tests 4, 5, 6, respectively.

For tests 10, 11, 12 (16KB block size):

I used ORADIM to delete the TEST16 instance, and then I deleted all control, data, and trace files related to that database,

then I restarted the computer. Changing just the init.ora file to specify an 16KB block size, I re-ran the scripts to create

the TEST16 database instance with a 16KB block size. I then followed exactly the same procedure as before for running the same

test scripts and captured the output. Tests 10, 11, 12 relate to tests 1, 2, 3, respectively.

The new test results will follow.

To minimize the number of changes made to the computer setup, I left the neon tube color at blue. :-)

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 7, 2008 5:15 PM in response to:
Reply

> Oracle performance is observed by recording response time and/or throughput.

>

> Why doesn't your test thingy measure performance?

>

My experiments include the elapsed time. Is that not a performance metric based on your first sentence?

>

> Also, I would expect any "test" by an Oracle Corporation employee to use your own scientific analysis tool, ODM, and to use

statistically valid scientific methods.

>

Would you please demonstrate exactly how Oracle Data Mining would be used in this case? Personally I don't see how it is

applicable here.

Based on your comments, it seems that you have a misunderstanding of how Scientific Method applies in this case. Using

Scientific Method does not mean we need variance and standard deviation. We can apply Scientific Method to every day problems.

For instance: "What do you do when your telephone doesn't work? Is the problem in the hand set, the cabling inside your house,

the hookup outside, or in the workings of the phone company? The process you might go through to solve this problem could

involve scientific thinking, and the results might contradict your initial expectations."[1]

And what I would expect from "one of the world’s leading Oracle experts"[2] is something more that cheering and jeering from

the sideline. How about you lead by example? Create your experiment and show your results and let others be as critical about

you as you are about them. If you do not want to participate in the experiments, then I think it is reasonable that you

refrain from the criticism.

>

> Oracle is a large set of computer programs, written by humans. IT'S NOT A SCIENCE!

>

I don't think anyone is defining Oracle software as a science. None the less the scientific method can be applied to it:

"Like any good scientist, you may question the range of situations (outside of science) in which the scientific method may be

applied. From what has been stated above, we determine that the scientific method works best in situations where one can

isolate the phenomenon of interest, by eliminating or accounting for extraneous factors, and where one can repeatedly test the

system under study after making limited, controlled changes in it."[2]

The experiments that have been conducted in this thread are about understanding cause and effect in specific situations. It

also is about controlled environments and understanding the effects if a given variable is modified. The participating parties

are interested in further understanding under what situations block size matters and why it matters.

--

Regards,

Greg Rahn

http://structureddata.org

[1] http://teacher.pas.rochester.edu/phy_labs/appendixe/appendixe.html

[2] http://www.dba-oracle.com/resume_don.htm

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 7, 2008 5:20 PM in response to: Richard Foote
Reply

> This might sound like a somewhat silly suggestion but

> it would be interesting (to me anyways) if you

> repeated the tests on the two different databases but

> with them both having the same block sizes.

>

> What would be the differences if the block sizes were

> identical because the databases would still differ by

> having different files on different parts of the file

> system.

>

> Just a thought.

>

> Cheers

>

> Richard Foote

> http://richardfoote.wordpress.com/

Richard,

That was a very good suggestion. I first removed the database instance and related files for the 16KB block size database,

built an 8KB block size database in its place, tested, removed the new 8KB database instance, built a new 16KB block size

database in its place, and tested again. The testing followed exactly the same procedure as before. The initial results are

below. Test runs 7, 8, and 9 are for the new 8KB database, test runs 10, 11, and 12 are for the 16KB database:

################# RESULTS #################

#TEST RUN 7 8KB:

 COUNT(*)

 11073

Elapsed: 00:00:00.65

Execution Plan...

Statistics

--

 641 recursive calls

 0 db block gets

 19569 consistent gets

 378 physical reads

 72 redo size

 413 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 25 sorts (memory)

 0 sorts (disk)

 1 rows processed

Table created.

Elapsed: 00:01:53.48

Commit complete.

Elapsed: 00:00:00.00

System altered.

Elapsed: 00:00:02.51

System altered.

Elapsed: 00:00:00.01

Index created.

Elapsed: 00:08:56.64

Table created.

Elapsed: 00:00:01.01

Index created.

Elapsed: 00:00:00.01

System altered.

Elapsed: 00:00:00.86

System altered.

Elapsed: 00:00:00.01

1000000 rows created.

Elapsed: 00:02:08.21

Execution Plan

--

Plan hash value: 3617692013

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 776K| 104M| 178K (2)| 00:35:47 |

|* 1 | TABLE ACCESS FULL| T1 | 776K| 104M| 178K (2)| 00:35:47 |

--

Predicate Information (identified by operation id):

 1 - filter("RN"<=100)

Note

 - dynamic sampling used for this statement

Statistics

--

 8295 recursive calls

 2855691 db block gets

 713243 consistent gets

 651602 physical reads

 470340500 redo size

 681 bytes sent via SQL*Net to client

 583 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 6 sorts (memory)

 0 sorts (disk)

 1000000 rows processed

Commit complete.

Elapsed: 00:00:00.01

System altered.

Elapsed: 00:00:18.18

System altered.

Elapsed: 00:00:00.01

Session altered.

Elapsed: 00:00:00.04

no rows selected

Elapsed: 00:01:12.59

Execution Plan

--

Plan hash value: 3617692013

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 7180 | 988K| 178K (2)| 00:35:44 |

|* 1 | TABLE ACCESS FULL| T1 | 7180 | 988K| 178K (2)| 00:35:44 |

--

Predicate Information (identified by operation id):

 1 - filter("STATUS"='NONE')

Note

 - dynamic sampling used for this statement

Statistics

--

 5 recursive calls

 0 db block gets

 651592 consistent gets

 651470 physical reads

 0 redo size

 1047 bytes sent via SQL*Net to client

 370 bytes received via SQL*Net from client

 1 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 0 rows processed

 COUNT(*)

 1000000

Elapsed: 00:00:02.45

Execution Plan

--

Plan hash value: 1385691034

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 1863 (1)| 00:00:23 |

| 1 | SORT AGGREGATE | | 1 | | |

| 2 | INDEX FAST FULL SCAN| T2_IND1 | 798K| 1863 (1)| 00:00:23 |

Note

 - dynamic sampling used for this statement

Statistics

--

 32 recursive calls

 3 db block gets

 14159 consistent gets

 7746 physical reads

 506724 redo size

 411 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 1 rows processed

OWNER OBJECT_NAME

------------------------------ ------------------------------

SUBOBJECT_NAME

9454 rows selected.

Elapsed: 00:01:42.18

Execution Plan

--

Plan hash value: 1118578911

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 50M| 2458M| 921K (1)| 03:04:19 |

| 1 | SORT UNIQUE NOSORT| | 50M| 2458M| 921K (1)| 03:04:19 |

| 2 | INDEX FULL SCAN | T1_IND1 | 50M| 2458M| 276K (1)| 00:55:24 |

--

Note

 - dynamic sampling used for this statement

Statistics

--

 5 recursive calls

 0 db block gets

 274740 consistent gets

 274369 physical reads

 0 redo size

 299162 bytes sent via SQL*Net to client

 7311 bytes received via SQL*Net from client

 632 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 9454 rows processed

Session altered.

Elapsed: 00:00:00.00

#TEST RUN 7 8KB:

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1;

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads |

| 1 | SORT UNIQUE NOSORT| | 1 | 50M| 9454 |00:02:37.67 | 274K| 274K|

| 2 | INDEX FULL SCAN | T1_IND1 | 1 | 50M| 50M|00:01:40.04 | 274K| 274K|

Note

 - dynamic sampling used for this statement

#TEST RUN 9 8KB:

PL/SQL procedure successfully completed.

Elapsed: 00:02:36.67

PL/SQL procedure successfully completed.

Elapsed: 00:02:23.29

System altered.

Elapsed: 00:00:00.06

System altered.

Elapsed: 00:00:00.01

Session altered.

Elapsed: 00:00:00.03

no rows selected

Elapsed: 00:01:11.59

Execution Plan

--

Plan hash value: 2134347679

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 32 | 178K (2)| 00:35:43 |

| 1 | HASH UNIQUE | | 1 | 32 | 178K (2)| 00:35:43 |

|* 2 | TABLE ACCESS FULL| T1 | 1 | 32 | 178K (2)| 00:35:43 |

Predicate Information (identified by operation id):

 2 - filter("STATUS"='NONE')

Statistics

--

 1 recursive calls

 0 db block gets

 651498 consistent gets

 651470 physical reads

 0 redo size

 399 bytes sent via SQL*Net to client

 370 bytes received via SQL*Net from client

 1 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 0 rows processed

Session altered.

Elapsed: 00:00:00.00

TABLE_NAME NUM_ROWS BLOCKS AVG_ROW_LEN

------------------------------ ---------- ---------- -----------

T1 50072042 652594 88

T2

INDEX_NAME BLEVEL LEAF_BLOCKS DISTINCT_KEYS AVG_LEAF_BLOCKS_PER_KEY AVG_DATA_BLOCKS_PER_KEY

CLUSTERING_FACTOR

------------------------------ ---------- ----------- ------------- ----------------------- ----------------------- ----------

T1_IND1 3 267918 45713274 1 1

47110621

T2_IND1

#TEST RUN 10 16KB:

 COUNT(*)

 11073

Elapsed: 00:00:00.62

Execution Plan...

Statistics

--

 641 recursive calls

 0 db block gets

 19499 consistent gets

 209 physical reads

 0 redo size

 413 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 25 sorts (memory)

 0 sorts (disk)

 1 rows processed

Table created.

Elapsed: 00:01:51.54

Commit complete.

Elapsed: 00:00:00.00

System altered.

Elapsed: 00:00:02.21

System altered.

Elapsed: 00:00:00.00

Index created.

Elapsed: 00:08:40.39

Table created.

Elapsed: 00:00:01.09

Index created.

Elapsed: 00:00:00.01

System altered.

Elapsed: 00:00:00.71

System altered.

Elapsed: 00:00:00.01

1000000 rows created.

Elapsed: 00:01:42.42

Execution Plan

--

Plan hash value: 3617692013

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 751K| 101M| 122K (2)| 00:28:38 |

|* 1 | TABLE ACCESS FULL| T1 | 751K| 101M| 122K (2)| 00:28:38 |

--

Predicate Information (identified by operation id):

 1 - filter("RN"<=100)

Note

 - dynamic sampling used for this statement

Statistics

--

 7253 recursive calls

 2491314 db block gets

 352577 consistent gets

 321650 physical reads

 445453548 redo size

 681 bytes sent via SQL*Net to client

 583 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 4 sorts (memory)

 0 sorts (disk)

 1000000 rows processed

Commit complete.

Elapsed: 00:00:00.00

System altered.

Elapsed: 00:00:14.45

System altered.

Elapsed: 00:00:00.01

Session altered.

Elapsed: 00:00:00.03

no rows selected

Elapsed: 00:01:08.78

Execution Plan

--

Plan hash value: 3617692013

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 3544 | 487K| 122K (2)| 00:28:34 |

|* 1 | TABLE ACCESS FULL| T1 | 3544 | 487K| 122K (2)| 00:28:34 |

--

Predicate Information (identified by operation id):

 1 - filter("STATUS"='NONE')

Note

 - dynamic sampling used for this statement

Statistics

--

 5 recursive calls

 0 db block gets

 321695 consistent gets

 321569 physical reads

 0 redo size

 1047 bytes sent via SQL*Net to client

 370 bytes received via SQL*Net from client

 1 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 0 rows processed

 COUNT(*)

 1000000

Elapsed: 00:00:02.62

Execution Plan

--

Plan hash value: 1385691034

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 1230 (1)| 00:00:18 |

| 1 | SORT AGGREGATE | | 1 | | |

| 2 | INDEX FAST FULL SCAN| T2_IND1 | 974K| 1230 (1)| 00:00:18 |

Note

 - dynamic sampling used for this statement

Statistics

--

 32 recursive calls

 3 db block gets

 6812 consistent gets

 4298 physical reads

 242000 redo size

 411 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 1 rows processed

OWNER OBJECT_NAME

------------------------------ ------------------------------

SUBOBJECT_NAME

9454 rows selected.

Elapsed: 00:01:19.85

Execution Plan

--

Plan hash value: 1118578911

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 54M| 2666M| 574K (1)| 02:14:01 |

| 1 | SORT UNIQUE NOSORT| | 54M| 2666M| 574K (1)| 02:14:01 |

| 2 | INDEX FULL SCAN | T1_IND1 | 54M| 2666M| 136K (1)| 00:31:51 |

--

Note

 - dynamic sampling used for this statement

Statistics

--

 5 recursive calls

 0 db block gets

 135802 consistent gets

 135129 physical reads

 0 redo size

 299135 bytes sent via SQL*Net to client

 7311 bytes received via SQL*Net from client

 632 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 9454 rows processed

Session altered.

Elapsed: 00:00:00.00

#TEST RUN 11 16KB:

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1;

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads |

| 1 | SORT UNIQUE NOSORT| | 1 | 54M| 9454 |00:02:10.37 | 135K| 135K|

| 2 | INDEX FULL SCAN | T1_IND1 | 1 | 54M| 50M|00:01:40.04 | 135K| 135K|

Note

 - dynamic sampling used for this statement

#TEST RUN 12 16KB:

PL/SQL procedure successfully completed.

Elapsed: 00:02:30.61

PL/SQL procedure successfully completed.

Elapsed: 00:02:29.34

System altered.

Elapsed: 00:00:00.03

System altered.

Elapsed: 00:00:00.01

Session altered.

Elapsed: 00:00:00.03

no rows selected

Elapsed: 00:01:11.26

Execution Plan

--

Plan hash value: 2134347679

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 33 | 122K (2)| 00:28:32 |

| 1 | HASH UNIQUE | | 1 | 33 | 122K (2)| 00:28:32 |

|* 2 | TABLE ACCESS FULL| T1 | 1 | 33 | 122K (2)| 00:28:32 |

Predicate Information (identified by operation id):

 2 - filter("STATUS"='NONE')

Statistics

--

 1 recursive calls

 0 db block gets

 321597 consistent gets

 321569 physical reads

 0 redo size

 399 bytes sent via SQL*Net to client

 370 bytes received via SQL*Net from client

 1 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 0 rows processed

Session altered.

Elapsed: 00:00:00.00

TABLE_NAME NUM_ROWS BLOCKS AVG_ROW_LEN

------------------------------ ---------- ---------- -----------

T1 50275095 322128 88

T2

INDEX_NAME BLEVEL LEAF_BLOCKS DISTINCT_KEYS AVG_LEAF_BLOCKS_PER_KEY AVG_DATA_BLOCKS_PER_KEY

CLUSTERING_FACTOR

------------------------------ ---------- ----------- ------------- ----------------------- ----------------------- ----------

T1_IND1 2 138977 48810943 1 1

49496736

T2_IND1

TKPROF output will follow.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 7, 2008 5:24 PM in response to: Charles Hooper
Reply

TKPROF output with direct comparison between the 8KB and 16KB block size runs:

Test 7 8KB:

**

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.01 1 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 632 33.71 99.25 274239 274645 0 9454

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 634 33.71 99.27 274240 274647 0 9454

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 9454 SORT UNIQUE NOSORT (cr=274645 pr=274239 pw=0 time=100635543 us)

50000000 INDEX FULL SCAN T1_IND1 (cr=274645 pr=274239 pw=0 time=100036443 us)(object id 11757)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 632 0.00 0.00

 db file scattered read 6922 0.02 5.10

 db file sequential read 226153 0.02 63.43

 SQL*Net message from client 632 0.01 2.77

**

Test 10 16KB:

**

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.01 0.00 1 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 632 29.46 76.99 135128 135703 0 9454

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 634 29.48 77.00 135129 135705 0 9454

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 9454 SORT UNIQUE NOSORT (cr=135703 pr=135128 pw=0 time=76572511 us)

50000000 INDEX FULL SCAN T1_IND1 (cr=135703 pr=135128 pw=0 time=50022973 us)(object id 11767)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 632 0.00 0.00

 db file sequential read 113857 0.06 44.23

 db file scattered read 7115 0.04 5.58

 SQL*Net message from client 632 0.01 2.76

**

Test 7 8KB:

**

SELECT

 *

FROM

 T1

WHERE

 STATUS='NONE'

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.02 1 1 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 11.92 71.41 648732 651498 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 3 11.92 71.43 648733 651499 0 0

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 0 TABLE ACCESS FULL T1 (cr=651498 pr=648732 pw=0 time=71414670 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 db file sequential read 2 0.01 0.01

 SQL*Net message to client 1 0.00 0.00

 db file scattered read 5140 0.05 59.73

 SQL*Net message from client 1 0.01 0.01

10046 Trace file:

PARSE #8:c=46875,e=1167603,p=2738,cr=94,cu=0,mis=1,r=0,dep=0,og=1,tim=945576493

EXEC #8:c=0,e=27,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,tim=945576674

WAIT #8: nam='SQL*Net message to client' ela= 3 driver id=1413697536 #bytes=1 p3=0 obj#=11756 tim=945576715

WAIT #8: nam='db file scattered read' ela= 10258 file#=4 block#=12 blocks=5 obj#=11756 tim=945587074

WAIT #8: nam='db file scattered read' ela= 15539 file#=4 block#=17 blocks=8 obj#=11756 tim=945602737

WAIT #8: nam='db file scattered read' ela= 1230 file#=4 block#=26 blocks=7 obj#=11756 tim=945604106

WAIT #8: nam='db file scattered read' ela= 556 file#=4 block#=33 blocks=8 obj#=11756 tim=945604792

WAIT #8: nam='db file scattered read' ela= 576 file#=4 block#=42 blocks=7 obj#=11756 tim=945605510

WAIT #8: nam='db file scattered read' ela= 551 file#=4 block#=49 blocks=8 obj#=11756 tim=945606191

WAIT #8: nam='db file scattered read' ela= 662 file#=4 block#=58 blocks=7 obj#=11756 tim=945606988

WAIT #8: nam='db file scattered read' ela= 556 file#=4 block#=65 blocks=8 obj#=11756 tim=945607672

WAIT #8: nam='db file scattered read' ela= 576 file#=4 block#=74 blocks=7 obj#=11756 tim=945608394

WAIT #8: nam='db file scattered read' ela= 741 file#=4 block#=81 blocks=8 obj#=11756 tim=945609263

WAIT #8: nam='db file scattered read' ela= 1259 file#=4 block#=90 blocks=7 obj#=11756 tim=945610664

WAIT #8: nam='db file scattered read' ela= 560 file#=4 block#=97 blocks=8 obj#=11756 tim=945611351

WAIT #8: nam='db file scattered read' ela= 538 file#=4 block#=106 blocks=7 obj#=11756 tim=945612034

WAIT #8: nam='db file scattered read' ela= 553 file#=4 block#=113 blocks=8 obj#=11756 tim=945612716

WAIT #8: nam='db file scattered read' ela= 667 file#=4 block#=122 blocks=7 obj#=11756 tim=945613521

WAIT #8: nam='db file scattered read' ela= 541 file#=4 block#=129 blocks=8 obj#=11756 tim=945614197

WAIT #8: nam='db file scattered read' ela= 11162 file#=4 block#=139 blocks=126 obj#=11756 tim=945625708

WAIT #8: nam='db file scattered read' ela= 11637 file#=4 block#=267 blocks=126 obj#=11756 tim=945639635

WAIT #8: nam='db file scattered read' ela= 9859 file#=4 block#=395 blocks=126 obj#=11756 tim=945651792

WAIT #8: nam='db file scattered read' ela= 10744 file#=4 block#=523 blocks=126 obj#=11756 tim=945664793

WAIT #8: nam='db file scattered read' ela= 9828 file#=4 block#=651 blocks=126 obj#=11756 tim=945676896

WAIT #8: nam='db file scattered read' ela= 12255 file#=4 block#=779 blocks=126 obj#=11756 tim=945691398

WAIT #8: nam='db file scattered read' ela= 10829 file#=4 block#=907 blocks=126 obj#=11756 tim=945704482

WAIT #8: nam='db file scattered read' ela= 9849 file#=4 block#=1035 blocks=126 obj#=11756 tim=945716588

...

WAIT #8: nam='db file scattered read' ela= 9841 file#=4 block#=651793 blocks=128 obj#=11756 tim=1016921816

WAIT #8: nam='db file scattered read' ela= 9825 file#=4 block#=651921 blocks=128 obj#=11756 tim=1016933916

WAIT #8: nam='db file scattered read' ela= 10742 file#=4 block#=652049 blocks=128 obj#=11756 tim=1016946981

WAIT #8: nam='db file scattered read' ela= 12264 file#=4 block#=652177 blocks=128 obj#=11756 tim=1016961540

WAIT #8: nam='db file scattered read' ela= 9726 file#=4 block#=652305 blocks=128 obj#=11756 tim=1016973607

WAIT #8: nam='db file scattered read' ela= 10801 file#=4 block#=652433 blocks=128 obj#=11756 tim=1016986700

WAIT #8: nam='db file scattered read' ela= 1990 file#=4 block#=652561 blocks=42 obj#=11756 tim=1016990801

FETCH #8:c=11921875,e=71414674,p=648732,cr=651498,cu=0,mis=0,r=0,dep=0,og=1,tim=1016991428

WAIT #8: nam='SQL*Net message from client' ela= 15789 driver id=1413697536 #bytes=1 p3=0 obj#=11756 tim=1017007310

STAT #8 id=1 cnt=0 pid=0 pos=1 obj=11756 op='TABLE ACCESS FULL T1 (cr=651498 pr=648732 pw=0 time=71414670 us)'

**

Test 10 16KB:

**

SELECT

 *

FROM

 T1

WHERE

 STATUS='NONE'

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.02 1 1 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 9.76 67.69 320423 321597 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 3 9.76 67.71 320424 321598 0 0

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 0 TABLE ACCESS FULL T1 (cr=321597 pr=320423 pw=0 time=67692842 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 db file sequential read 1 0.01 0.01

 SQL*Net message to client 1 0.00 0.00

 db file scattered read 5085 0.05 58.16

 SQL*Net message from client 1 0.02 0.02

10046 Trace File:

PARSE #14:c=93750,e=1064918,p=1146,cr=98,cu=0,mis=1,r=0,dep=0,og=1,tim=952554189

EXEC #14:c=0,e=28,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,tim=952554367

WAIT #14: nam='SQL*Net message to client' ela= 2 driver id=1413697536 #bytes=1 p3=0 obj#=11766 tim=952554408

WAIT #14: nam='db file scattered read' ela= 12323 file#=4 block#=8 blocks=5 obj#=11766 tim=952566858

WAIT #14: nam='db file scattered read' ela= 1193 file#=4 block#=13 blocks=4 obj#=11766 tim=952568220

WAIT #14: nam='db file scattered read' ela= 575 file#=4 block#=17 blocks=4 obj#=11766 tim=952568922

WAIT #14: nam='db file scattered read' ela= 641 file#=4 block#=22 blocks=3 obj#=11766 tim=952569678

WAIT #14: nam='db file scattered read' ela= 568 file#=4 block#=25 blocks=4 obj#=11766 tim=952570344

WAIT #14: nam='db file scattered read' ela= 828 file#=4 block#=29 blocks=4 obj#=11766 tim=952571296

WAIT #14: nam='db file scattered read' ela= 574 file#=4 block#=33 blocks=4 obj#=11766 tim=952571995

WAIT #14: nam='db file scattered read' ela= 596 file#=4 block#=38 blocks=3 obj#=11766 tim=952572716

WAIT #14: nam='db file scattered read' ela= 676 file#=4 block#=41 blocks=4 obj#=11766 tim=952573492

WAIT #14: nam='db file scattered read' ela= 1159 file#=4 block#=45 blocks=4 obj#=11766 tim=952574778

WAIT #14: nam='db file scattered read' ela= 572 file#=4 block#=49 blocks=4 obj#=11766 tim=952575486

WAIT #14: nam='db file scattered read' ela= 515 file#=4 block#=54 blocks=3 obj#=11766 tim=952576124

WAIT #14: nam='db file scattered read' ela= 567 file#=4 block#=57 blocks=4 obj#=11766 tim=952576793

WAIT #14: nam='db file scattered read' ela= 750 file#=4 block#=61 blocks=4 obj#=11766 tim=952577667

WAIT #14: nam='db file scattered read' ela= 577 file#=4 block#=65 blocks=4 obj#=11766 tim=952578373

WAIT #14: nam='db file scattered read' ela= 19168 file#=4 block#=70 blocks=63 obj#=11766 tim=952597773

WAIT #14: nam='db file scattered read' ela= 28313 file#=4 block#=134 blocks=63 obj#=11766 tim=952627962

WAIT #14: nam='db file scattered read' ela= 35142 file#=4 block#=198 blocks=63 obj#=11766 tim=952665097

WAIT #14: nam='db file scattered read' ela= 35259 file#=4 block#=262 blocks=63 obj#=11766 tim=952702226

WAIT #14: nam='db file scattered read' ela= 36198 file#=4 block#=326 blocks=63 obj#=11766 tim=952740355

WAIT #14: nam='db file scattered read' ela= 35145 file#=4 block#=390 blocks=63 obj#=11766 tim=952777475

WAIT #14: nam='db file scattered read' ela= 37517 file#=4 block#=454 blocks=63 obj#=11766 tim=952816880

WAIT #14: nam='db file scattered read' ela= 42379 file#=4 block#=518 blocks=63 obj#=11766 tim=952861118

...

WAIT #14: nam='db file scattered read' ela= 10201 file#=4 block#=321673 blocks=64 obj#=11766 tim=1020166933

WAIT #14: nam='db file scattered read' ela= 13637 file#=4 block#=321737 blocks=64 obj#=11766 tim=1020182441

WAIT #14: nam='db file scattered read' ela= 10208 file#=4 block#=321801 blocks=64 obj#=11766 tim=1020194513

WAIT #14: nam='db file scattered read' ela= 10237 file#=4 block#=321865 blocks=64 obj#=11766 tim=1020206619

WAIT #14: nam='db file scattered read' ela= 11186 file#=4 block#=321929 blocks=64 obj#=11766 tim=1020219672

WAIT #14: nam='db file scattered read' ela= 10174 file#=4 block#=321993 blocks=64 obj#=11766 tim=1020231775

WAIT #14: nam='db file scattered read' ela= 10169 file#=4 block#=322057 blocks=64 obj#=11766 tim=1020243848

WAIT #14: nam='db file scattered read' ela= 1357 file#=4 block#=322121 blocks=12 obj#=11766 tim=1020246986

FETCH #14:c=9765625,e=67692846,p=320423,cr=321597,cu=0,mis=0,r=0,dep=0,og=1,tim=1020247320

WAIT #14: nam='SQL*Net message from client' ela= 27653 driver id=1413697536 #bytes=1 p3=0 obj#=11766 tim=1020275060

STAT #14 id=1 cnt=0 pid=0 pos=1 obj=11766 op='TABLE ACCESS FULL T1 (cr=321597 pr=320423 pw=0 time=67692842 us)'

**

Test 7 8KB:

**

OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 16 0.00 0.07 5 10 0 0

Execute 17 0.01 0.10 17 142 8 8

Fetch 642 45.93 172.36 929937 940085 2 9498

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 675 45.95 172.55 929959 940237 10 9506

Misses in library cache during parse: 9

Misses in library cache during execute: 3

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 668 0.00 0.00

 SQL*Net message from client 668 0.01 2.81

 db file sequential read 226183 0.02 63.63

 db file scattered read 12186 0.05 65.93

 db file parallel read 1 0.28 0.28

**

Test 10 16KB:

**

OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 16 0.03 0.06 5 10 0 0

Execute 17 0.00 0.10 17 136 8 8

Fetch 642 39.46 146.40 458876 463952 2 9498

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 675 39.50 146.56 458898 464098 10 9506

Misses in library cache during parse: 9

Misses in library cache during execute: 3

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 668 0.00 0.00

 SQL*Net message from client 668 0.02 2.80

 db file sequential read 113888 0.06 44.43

 db file scattered read 12267 0.05 64.88

 db file parallel read 1 0.26 0.26

**

Test 7 8KB:

**

SELECT

 COUNT(*)

FROM

 T2

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.02 2 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 0.26 1.69 6966 13942 2 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 0.26 1.71 6968 13944 2 1

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=13942 pr=6966 pw=0 time=1690194 us)

1000000 INDEX FAST FULL SCAN T2_IND1 (cr=13942 pr=6966 pw=0 time=334249 us)(object id 11759)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 db file sequential read 2 0.01 0.02

 db file parallel read 1 0.28 0.28

 db file scattered read 124 0.02 1.09

 SQL*Net message from client 2 0.00 0.00

**

Test 10 16KB:

**

SELECT

 COUNT(*)

FROM

 T2

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.02 2 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 0.23 1.70 3325 6652 2 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 0.23 1.73 3327 6654 2 1

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=6652 pr=3325 pw=0 time=1705485 us)

1000000 INDEX FAST FULL SCAN T2_IND1 (cr=6652 pr=3325 pw=0 time=3326572 us)(object id 11769)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 db file sequential read 4 0.02 0.05

 db file parallel read 1 0.26 0.26

 db file scattered read 67 0.04 1.13

 SQL*Net message from client 2 0.00 0.00

**

Test 8 8KB:

**

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.06 0.16 0 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 95 83.29 157.70 274019 274113 0 9454

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 97 83.35 157.87 274019 274115 0 9454

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 9454 SORT UNIQUE NOSORT (cr=274113 pr=274019 pw=0 time=157670269 us)

50000000 INDEX FULL SCAN T1_IND1 (cr=274113 pr=274019 pw=0 time=100044637 us)(object id 11757)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 95 0.00 0.00

 db file sequential read 274019 0.03 77.50

 SQL*Net more data to client 85 0.00 0.00

 SQL*Net message from client 95 0.70 0.75

**

Test 11 16KB:

**

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.06 0.15 0 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 95 75.93 130.40 135072 135166 0 9454

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 97 76.00 130.55 135072 135168 0 9454

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 9454 SORT UNIQUE NOSORT (cr=135166 pr=135072 pw=0 time=130371766 us)

50000000 INDEX FULL SCAN T1_IND1 (cr=135166 pr=135072 pw=0 time=100040110 us)(object id 11767)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 95 0.00 0.00

 db file sequential read 135072 0.03 54.73

 SQL*Net more data to client 84 0.00 0.00

 SQL*Net message from client 95 0.69 0.73

**

Test 9 8KB:

**

SELECT DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

WHERE

 STATUS='NONE'

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.02 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 11.75 71.40 651470 651498 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 3 11.75 71.42 651470 651498 0 0

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 0 HASH UNIQUE (cr=651498 pr=651470 pw=0 time=71409334 us)

 0 TABLE ACCESS FULL T1 (cr=651498 pr=651470 pw=0 time=71409264 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 1 0.00 0.00

 db file sequential read 1 0.01 0.01

 db file scattered read 5114 0.05 59.96

 SQL*Net message from client 1 0.01 0.01

**

Test 12 16KB:

**

SELECT DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

WHERE

 STATUS='NONE'

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.01 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 10.10 71.07 321569 321597 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 3 10.10 71.09 321569 321597 0 0

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 0 HASH UNIQUE (cr=321597 pr=321569 pw=0 time=71077823 us)

 0 TABLE ACCESS FULL T1 (cr=321597 pr=321569 pw=0 time=71077749 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 1 0.00 0.00

 db file sequential read 1 0.02 0.02

 db file scattered read 5048 0.05 61.69

 SQL*Net message from client 1 0.03 0.03

**

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 7, 2008 8:51 PM in response to: Charles Hooper
Reply

Charles,

Excellent test. I wish i could have done similar tests. What i understood is, higher the data volume request, Oracle always

favor in higher data block. I will leave for Experts to comment on your valuable test results.

Regards,

sp009

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 8, 2008 8:15 AM in response to: sp009
Reply

>

> Excellent test. I wish i could have done similar

> tests. What i understood is, higher the data volume

> request, Oracle always favor in higher data block.

>

sp009,

I haven't had time to compare all the different results yet, but I can't help noticing that when Greg Rahn showed the the

block size made virtually no difference (bar a small benefit in favour of smaller blocks) you didnt' leap to a sweeping

conclusion that smaller was always better. Nor did you leap to such a conclusion when Charles Hooper's first set of results

suggested that a larger block size was actually a liability.

But now that there are some results that agree with your favoured point of view you rush to affirm that a larger block size is

always better.

Wrong approach - you're supposed to design a theory to match the facts, not select the facts to match the theory.

In comparison, when Richard saw that Charles Hooper's results suggested that the 'big is better' hypothesis was completely

wrong he didn't claim that the results supported his argument, he used his knowledge of how Oracle works to suggest that there

was a flaw in the test methodology that needed to be addressed.

When Greg Rahn produced a set of results that supported the theory that the block size makes virtually no difference - and

actually got better results from the smaller block size - I didn't claim this as proof of a point that I've often made, I

pointed out (using my knowledge of how Oracle works) a feature of 11g that had an impact on the test that could introduce a

bias to the results that wouldn't necessarily appear in general - although it might be a benefit in data warehouses.

As far as Charles' latest results are concerned, there are three anomalies that I would be interested in:

a) From the query summary tables in the tkprof output, disk = query, which means the data is in an unusually clean state, and

effects of read-consistency have been factored out. Is this a reasonable test from which you could safely draw your general

conclusion.

b) Glancing at a couple of the tkprof outputs, the error in internal accounting (CPU + recorded waits != elapsed) is often as

large as the difference in timing between the tests of different block sizes.

c) The index full scan test shows a dramatic benefit for the 16K block. You can associate some of the benefit to having halved

the number of latch acquisitions needed (remember the point I made about Greg's example); but the benefit is so unexpectedly

large that I would want to examine two other features of this example before I used it as a basis for a decision to rebuild a

database (or even tablespace) with a larger block size.

i) Why wasn't the optimizer using the "db file parallel read" in a case where it was so obviously appropriate - it's possible

that the nature of the test, particularly the database restart, has stopped Oracle from using a mechanical optimisation that

would normally be available.

ii) Why is there such a difference in the total time spend on single block reads when the index is in a perfect shape to

benefit from O/S readahead/prefetching - the index leaf blocks should be ordered "on disc" nearly perfectly, so Oracle's

choice of block size shouldn't (or wouldn't, on other platforms) have affected the number of real disk seeks that took place.

In fact, the average read times are so fast that something of that sort seems to have happened - but my next step would be to

analyze the trace files in detail to check for any anomaly.

It's tedious and boring - but if you want to treat unexpectedly bad results in the same way as unexpectedly good results ...

assume there's something important you've overlooked.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Re: Larger vs. Small data block

Posted: Jun 8, 2008 8:48 AM in response to: Greg Rahn
Reply

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 8, 2008 8:58 AM in response to: sp009
Reply

> Charles,

>

> Excellent test. I wish i could have done similar

> tests. What i understood is, higher the data volume

> request, Oracle always favor in higher data block. I

> will leave for Experts to comment on your valuable

> test results.

>

> Regards,

> sp009

sp009,

Thanks for the remark.

However, even though I attempted to control the experiment as best as possible, there were a couple configuration issues,

limitations, and testing depth problems in the experiment. The set of tests at this point is not as conclusive as I would like

to see. For example, compare the elapsed times for the first set of tests with the 8KB block size database with the last set

of tests with the 16KB block size database - notice how the elapsed times are similar. Or, compare the elapsed times for the

first set of tests with the 16KB block size with the last set of tests with the 16KB block size database - notice how they are

different, even though I attempted to create them in the same area of the disks.

The problems that I have with the tests that I conducted are as follows (this is a short list):

* The initial size of the data file for the USER_DATA tablespace was not initially created large enough (2GB, should have been

8GB), and had to expand 100MB at a time. This might mimic actual real-world database behavior, or it might have artificially

affected performance measurements.

* Redo writing speed due to disk contention may have been a problem.

* I was not creative enough when creating the SQL statements to produce different execution plans - the test did include full

table scans, full index scans, and fast full index scans. All plans involved a single table. No index unique scans or range

scans were included.

* The tests did not examine update performance for indexes or tables, other than the brief test of inserting 1,000,000 rows

into T2 that had an existing index (if you want a real test, insert all rows from T1 into T2).

* System statistics were not gathered, nor were statistics on the SYS schema, nor were statistics gathered on fixed object

statistics. Statistics were not gathered on the table (just one) and its index until the end of the experiment. This may have

lead to excessive problems with dynamic sampling, or inappropriate execution plans.

* The second run of the statistics gathering shows that the statistics were gathered faster the during the second statistics

gathering execution in the 8KB block size database, but that was not the case in the 16KB block size database. This may imply

that had I not flushed the buffer cache several times through the test, or restarted the computer, the elapsed time for the

8KB test runs may have been more favorable.

* The trace files showed a great variation in the ela= values for db file scattered read, allowing one of the 1MB reads to

complete twice as fast as one of the 64KB reads: (8KB block size)

 block#=17 blocks=8 ela=910

 block#=26 blocks=7 ela=18546

 block#=33 blocks=8 ela=935

 block#=42 blocks=7 ela=554

 ...

 block#=652177 blocks=128 ela=9012

The experiment did not show quite what I expected, but it did show a couple interesting things. As far as I can tell, the test

is currently inconclusive, but that may just mean that it either needs to be repeated on several different Oracle servers, or

that the flaws in the test need to be fixed and then tested several times.

The DBMS_XPLAN with actual run statistics seems to show that an INDEX FULL SCAN (single block reads) requires roughly the same

amount of time regardless of block size:

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads |

#TEST RUN 7 8KB:

| 2 | INDEX FULL SCAN | T1_IND1 | 1 | 50M| 50M|00:01:40.04 | 274K| 274K|

#TEST RUN 11 16KB:

| 2 | INDEX FULL SCAN | T1_IND1 | 1 | 54M| 50M|00:01:40.04 | 135K| 135K|

However, the DISTINCT requirement seemed to tip the balance toward the larger block size:

#TEST RUN 7 8KB:

| 1 | SORT UNIQUE NOSORT| | 1 | 50M| 9454 |00:02:37.67 | 274K| 274K|

#TEST RUN 11 16KB:

| 1 | SORT UNIQUE NOSORT| | 1 | 54M| 9454 |00:02:10.37 | 135K| 135K|

I am interested in seeing the analysis and results posted by others in the group. This has been a very interesting thread.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 8, 2008 10:50 AM in response to:
Reply

>

> No, sorry. The goal of this thread (correct me if

> I'm wrong) is to challenge the conventional wisdom

> about the general observations of performance

> differences with different blocksizes, and the only

> way to validate the empirical observations

> scientifically is with a stochastic study, finding

> the correlations, variable and beta.

>

You're wrong.

The goal of this thread has moved around a bit but, to a large degree, has involved intelligent adults developing tests and

sharing observations. The goal has not been to "challenge the conventional wisdom about the general observations of

performance differences with different blocksizes", because the conventional wisdom is that changes in block size may

occasionally help, may occasionally cause problems, and typically are an irrelevant waste of effort.

>

> >> I don't think anyone is defining Oracle software as a science.

>

> You and Jonathan do, that was my point:

>

> http://www.oaktable.net/

> "The OakTable Network: A network for the Oracle scientist"

>

> You are listed as a member of this "Network for the Oracle scientist", right?

>

> Please enlighten us. . . .

>

If the term "Oracle Scentist" is such a problem, there's a definition near the end of the following article:

http://www.jlcomp.demon.co.uk/scientist.html

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 8, 2008 2:53 PM in response to: Charles Hooper
Reply

In the interest in determining what is happening when the 8KB block size database during test 7 reported that the elapsed time

was 00:01:42.18, while the 16KB block size database during test 10 reported that the elapsed time was 00:01:19.85, I will take

a closer look at the 10046 trace file captured at level 8. We start to see the significance of directly examining the 10046

trace file. For this section of the TKPROF output:

Test 7 8KB:

**

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.01 1 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 632 33.71 99.25 274239 274645 0 9454

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 634 33.71 99.27 274240 274647 0 9454

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 9454 SORT UNIQUE NOSORT (cr=274645 pr=274239 pw=0 time=100635543 us)

50000000 INDEX FULL SCAN T1_IND1 (cr=274645 pr=274239 pw=0 time=100036443 us)(object id 11757)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 632 0.00 0.00

 db file scattered read 6922 0.02 5.10

 db file sequential read 226153 0.02 63.43

 SQL*Net message from client 632 0.01 2.77

**

Test 10 16KB:

**

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.01 0.00 1 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 632 29.46 76.99 135128 135703 0 9454

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 634 29.48 77.00 135129 135705 0 9454

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 9454 SORT UNIQUE NOSORT (cr=135703 pr=135128 pw=0 time=76572511 us)

50000000 INDEX FULL SCAN T1_IND1 (cr=135703 pr=135128 pw=0 time=50022973 us)(object id 11767)

We see in the trace file an odd pattern that might be caused by the ASSM segment management for the tablespace:

EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO

The 8KB database shows a repeating pattern of reading 7 blocks, followed by the next block being read all by itself. The 16KB

database shows a repeating pattern of reading 3 blocks, followed by the next block being read by by itself. For every 15 rows

fetched, the 8KB block read pattern repeats approximately one extra cycle. Unlike the portion of the trace file for the full

table scan where Oracle switched to a 1024KB read, Oracle never switches to using more than a 56KB read during the index full

scan.

The beginning portion of this trace file follows, with spaces added in the 16KB database's trace file when an extra read was

required in the 8KB database's trace file.

8KB

PARSING IN CURSOR #6 len=83 dep=0 uid=30 oct=3 lid=30 tim=1020768742 hv=3216823004 ad='50dca234'

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

END OF STMT

PARSE #6:c=15625,e=69901,p=130,cr=95,cu=0,mis=1,r=0,dep=0,og=1,tim=1020768738

EXEC #6:c=0,e=35,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,tim=1020768926

WAIT #6: nam='SQL*Net message to client' ela= 3 driver id=1413697536 #bytes=1 p3=0 obj#=11757 tim=1020768963

WAIT #6: nam='db file scattered read' ela= 15359 file#=4 block#=655372 blocks=5 obj#=11757 tim=1020784405

WAIT #6: nam='db file sequential read' ela= 8850 file#=4 block#=698610 blocks=1 obj#=11757 tim=1020793304

WAIT #6: nam='db file sequential read' ela= 12070 file#=4 block#=655598 blocks=1 obj#=11757 tim=1020805410

WAIT #6: nam='db file sequential read' ela= 215 file#=4 block#=655377 blocks=1 obj#=11757 tim=1020806016

WAIT #6: nam='db file scattered read' ela= 4686 file#=4 block#=655378 blocks=7 obj#=11757 tim=1020810829

WAIT #6: nam='db file sequential read' ela= 237 file#=4 block#=655386 blocks=1 obj#=11757 tim=1020811669

WAIT #6: nam='db file scattered read' ela= 427 file#=4 block#=655387 blocks=6 obj#=11757 tim=1020812223

WAIT #6: nam='db file sequential read' ela= 233 file#=4 block#=655393 blocks=1 obj#=11757 tim=1020812993

WAIT #6: nam='db file scattered read' ela= 586 file#=4 block#=655394 blocks=7 obj#=11757 tim=1020813710

WAIT #6: nam='db file sequential read' ela= 238 file#=4 block#=655402 blocks=1 obj#=11757 tim=1020814548

WAIT #6: nam='db file scattered read' ela= 397 file#=4 block#=655403 blocks=6 obj#=11757 tim=1020815073

FETCH #6:c=0,e=46165,p=37,cr=32,cu=0,mis=0,r=1,dep=0,og=1,tim=1020815171

WAIT #6: nam='SQL*Net message from client' ela= 12044 driver id=1413697536 #bytes=1 p3=0 obj#=11757 tim=1020827278

WAIT #6: nam='db file sequential read' ela= 264 file#=4 block#=655409 blocks=1 obj#=11757 tim=1020828060

WAIT #6: nam='db file scattered read' ela= 721 file#=4 block#=655410 blocks=7 obj#=11757 tim=1020828913

WAIT #6: nam='db file sequential read' ela= 260 file#=4 block#=655418 blocks=1 obj#=11757 tim=1020829761

WAIT #6: nam='db file scattered read' ela= 437 file#=4 block#=655419 blocks=6 obj#=11757 tim=1020830323

WAIT #6: nam='db file sequential read' ela= 227 file#=4 block#=655425 blocks=1 obj#=11757 tim=1020831055

WAIT #6: nam='db file scattered read' ela= 592 file#=4 block#=655426 blocks=7 obj#=11757 tim=1020831771

WAIT #6: nam='db file sequential read' ela= 215 file#=4 block#=655434 blocks=1 obj#=11757 tim=1020832573

WAIT #6: nam='SQL*Net message to client' ela= 2 driver id=1413697536 #bytes=1 p3=0 obj#=11757 tim=1020832670

WAIT #6: nam='db file scattered read' ela= 16648 file#=4 block#=655435 blocks=6 obj#=11757 tim=1020849377

WAIT #6: nam='db file sequential read' ela= 204 file#=4 block#=655441 blocks=1 obj#=11757 tim=1020850073

WAIT #6: nam='db file scattered read' ela= 704 file#=4 block#=655442 blocks=7 obj#=11757 tim=1020850900

WAIT #6: nam='db file sequential read' ela= 205 file#=4 block#=655450 blocks=1 obj#=11757 tim=1020851666

WAIT #6: nam='db file scattered read' ela= 430 file#=4 block#=655451 blocks=6 obj#=11757 tim=1020852220

WAIT #6: nam='db file sequential read' ela= 224 file#=4 block#=655457 blocks=1 obj#=11757 tim=1020852951

WAIT #6: nam='db file scattered read' ela= 600 file#=4 block#=655458 blocks=7 obj#=11757 tim=1020853672

WAIT #6: nam='db file sequential read' ela= 248 file#=4 block#=655466 blocks=1 obj#=11757 tim=1020854506

WAIT #6: nam='db file scattered read' ela= 438 file#=4 block#=655467 blocks=6 obj#=11757 tim=1020855070

WAIT #6: nam='db file sequential read' ela= 206 file#=4 block#=655473 blocks=1 obj#=11757 tim=1020855764

WAIT #6: nam='db file scattered read' ela= 596 file#=4 block#=655474 blocks=7 obj#=11757 tim=1020856479

WAIT #6: nam='db file sequential read' ela= 365 file#=4 block#=655482 blocks=1 obj#=11757 tim=1020857403

WAIT #6: nam='db file scattered read' ela= 465 file#=4 block#=655483 blocks=6 obj#=11757 tim=1020857988

WAIT #6: nam='db file sequential read' ela= 244 file#=4 block#=655489 blocks=1 obj#=11757 tim=1020858717

WAIT #6: nam='db file scattered read' ela= 633 file#=4 block#=655490 blocks=7 obj#=11757 tim=1020859472

WAIT #6: nam='db file sequential read' ela= 240 file#=4 block#=655499 blocks=1 obj#=11757 tim=1020860273

WAIT #6: nam='db file scattered read' ela= 439 file#=4 block#=655500 blocks=5 obj#=11757 tim=1020860835

WAIT #6: nam='db file sequential read' ela= 206 file#=4 block#=655505 blocks=1 obj#=11757 tim=1020861495

WAIT #6: nam='db file scattered read' ela= 591 file#=4 block#=655506 blocks=7 obj#=11757 tim=1020862210

WAIT #6: nam='db file sequential read' ela= 210 file#=4 block#=655513 blocks=1 obj#=11757 tim=1020863010

WAIT #6: nam='db file scattered read' ela= 472 file#=4 block#=655514 blocks=7 obj#=11757 tim=1020863608

WAIT #6: nam='db file sequential read' ela= 270 file#=4 block#=655521 blocks=1 obj#=11757 tim=1020864485

WAIT #6: nam='db file scattered read' ela= 634 file#=4 block#=655522 blocks=7 obj#=11757 tim=1020865245

WAIT #6: nam='db file sequential read' ela= 265 file#=4 block#=655529 blocks=1 obj#=11757 tim=1020866117

WAIT #6: nam='db file scattered read' ela= 440 file#=4 block#=655530 blocks=7 obj#=11757 tim=1020866685

WAIT #6: nam='db file sequential read' ela= 218 file#=4 block#=655537 blocks=1 obj#=11757 tim=1020867524

WAIT #6: nam='db file scattered read' ela= 588 file#=4 block#=655538 blocks=7 obj#=11757 tim=1020868242

WAIT #6: nam='db file sequential read' ela= 248 file#=4 block#=655545 blocks=1 obj#=11757 tim=1020869198

WAIT #6: nam='db file scattered read' ela= 9739 file#=4 block#=655546 blocks=7 obj#=11757 tim=1020879079

WAIT #6: nam='db file sequential read' ela= 213 file#=4 block#=655553 blocks=1 obj#=11757 tim=1020879919

WAIT #6: nam='db file scattered read' ela= 700 file#=4 block#=655554 blocks=7 obj#=11757 tim=1020880749

WAIT #6: nam='db file sequential read' ela= 217 file#=4 block#=655561 blocks=1 obj#=11757 tim=1020881588

WAIT #6: nam='db file scattered read' ela= 451 file#=4 block#=655562 blocks=7 obj#=11757 tim=1020882168

WAIT #6: nam='db file sequential read' ela= 220 file#=4 block#=655569 blocks=1 obj#=11757 tim=1020883006

WAIT #6: nam='db file scattered read' ela= 592 file#=4 block#=655570 blocks=7 obj#=11757 tim=1020883727

WAIT #6: nam='db file sequential read' ela= 3700 file#=4 block#=655577 blocks=1 obj#=11757 tim=1020888050

WAIT #6: nam='db file scattered read' ela= 463 file#=4 block#=655578 blocks=7 obj#=11757 tim=1020888642

WAIT #6: nam='db file sequential read' ela= 230 file#=4 block#=655585 blocks=1 obj#=11757 tim=1020889518

WAIT #6: nam='db file scattered read' ela= 591 file#=4 block#=655586 blocks=7 obj#=11757 tim=1020890234

WAIT #6: nam='db file scattered read' ela= 411 file#=4 block#=655593 blocks=5 obj#=11757 tim=1020891210

WAIT #6: nam='db file scattered read' ela= 269 file#=4 block#=655599 blocks=2 obj#=11757 tim=1020891894

WAIT #6: nam='db file sequential read' ela= 190 file#=4 block#=655601 blocks=1 obj#=11757 tim=1020892266

WAIT #6: nam='db file scattered read' ela= 601 file#=4 block#=655602 blocks=7 obj#=11757 tim=1020892987

WAIT #6: nam='db file sequential read' ela= 234 file#=4 block#=655609 blocks=1 obj#=11757 tim=1020893787

WAIT #6: nam='db file scattered read' ela= 468 file#=4 block#=655610 blocks=7 obj#=11757 tim=1020894377

WAIT #6: nam='db file sequential read' ela= 220 file#=4 block#=655617 blocks=1 obj#=11757 tim=1020895171

WAIT #6: nam='db file scattered read' ela= 556 file#=4 block#=655618 blocks=7 obj#=11757 tim=1020895848

WAIT #6: nam='db file sequential read' ela= 219 file#=4 block#=655627 blocks=1 obj#=11757 tim=1020896650

WAIT #6: nam='db file scattered read' ela= 448 file#=4 block#=655628 blocks=5 obj#=11757 tim=1020897224

WAIT #6: nam='db file sequential read' ela= 237 file#=4 block#=655633 blocks=1 obj#=11757 tim=1020897884

WAIT #6: nam='db file scattered read' ela= 589 file#=4 block#=655634 blocks=7 obj#=11757 tim=1020898599

WAIT #6: nam='db file sequential read' ela= 215 file#=4 block#=655641 blocks=1 obj#=11757 tim=1020899402

WAIT #6: nam='db file scattered read' ela= 425 file#=4 block#=655642 blocks=7 obj#=11757 tim=1020899950

WAIT #6: nam='db file sequential read' ela= 195 file#=4 block#=655649 blocks=1 obj#=11757 tim=1020900789

WAIT #6: nam='db file scattered read' ela= 565 file#=4 block#=655650 blocks=7 obj#=11757 tim=1020901503

WAIT #6: nam='db file sequential read' ela= 182 file#=4 block#=655657 blocks=1 obj#=11757 tim=1020902305

WAIT #6: nam='db file scattered read' ela= 445 file#=4 block#=655658 blocks=7 obj#=11757 tim=1020902889

WAIT #6: nam='db file sequential read' ela= 213 file#=4 block#=655665 blocks=1 obj#=11757 tim=1020903727

WAIT #6: nam='db file scattered read' ela= 587 file#=4 block#=655666 blocks=7 obj#=11757 tim=1020904445

WAIT #6: nam='db file sequential read' ela= 222 file#=4 block#=655673 blocks=1 obj#=11757 tim=1020905284

WAIT #6: nam='db file scattered read' ela= 528 file#=4 block#=655674 blocks=7 obj#=11757 tim=1020905942

WAIT #6: nam='db file sequential read' ela= 256 file#=4 block#=655681 blocks=1 obj#=11757 tim=1020906780

WAIT #6: nam='db file scattered read' ela= 631 file#=4 block#=655682 blocks=7 obj#=11757 tim=1020907538

WAIT #6: nam='db file sequential read' ela= 251 file#=4 block#=655689 blocks=1 obj#=11757 tim=1020908374

WAIT #6: nam='db file scattered read' ela= 499 file#=4 block#=655690 blocks=7 obj#=11757 tim=1020908996

WAIT #6: nam='db file sequential read' ela= 219 file#=4 block#=655697 blocks=1 obj#=11757 tim=1020909797

WAIT #6: nam='db file scattered read' ela= 596 file#=4 block#=655698 blocks=7 obj#=11757 tim=1020910516

WAIT #6: nam='db file sequential read' ela= 214 file#=4 block#=655705 blocks=1 obj#=11757 tim=1020911317

WAIT #6: nam='db file scattered read' ela= 498 file#=4 block#=655706 blocks=7 obj#=11757 tim=1020911939

WAIT #6: nam='db file sequential read' ela= 271 file#=4 block#=655713 blocks=1 obj#=11757 tim=1020912777

WAIT #6: nam='db file scattered read' ela= 621 file#=4 block#=655714 blocks=7 obj#=11757 tim=1020913535

WAIT #6: nam='db file sequential read' ela= 259 file#=4 block#=655721 blocks=1 obj#=11757 tim=1020914371

WAIT #6: nam='db file scattered read' ela= 495 file#=4 block#=655722 blocks=7 obj#=11757 tim=1020914991

WAIT #6: nam='db file sequential read' ela= 241 file#=4 block#=655729 blocks=1 obj#=11757 tim=1020915792

WAIT #6: nam='db file scattered read' ela= 637 file#=4 block#=655730 blocks=7 obj#=11757 tim=1020916554

WAIT #6: nam='db file sequential read' ela= 246 file#=4 block#=655737 blocks=1 obj#=11757 tim=1020917385

WAIT #6: nam='db file scattered read' ela= 5246 file#=4 block#=655738 blocks=7 obj#=11757 tim=1020922756

WAIT #6: nam='db file sequential read' ela= 219 file#=4 block#=655745 blocks=1 obj#=11757 tim=1020923562

WAIT #6: nam='db file scattered read' ela= 698 file#=4 block#=655746 blocks=7 obj#=11757 tim=1020924388

WAIT #6: nam='db file sequential read' ela= 240 file#=4 block#=655755 blocks=1 obj#=11757 tim=1020925225

WAIT #6: nam='db file scattered read' ela= 483 file#=4 block#=655756 blocks=5 obj#=11757 tim=1020925833

WAIT #6: nam='db file sequential read' ela= 248 file#=4 block#=655761 blocks=1 obj#=11757 tim=1020926531

WAIT #6: nam='db file scattered read' ela= 633 file#=4 block#=655762 blocks=7 obj#=11757 tim=1020927290

WAIT #6: nam='db file sequential read' ela= 243 file#=4 block#=655769 blocks=1 obj#=11757 tim=1020928125

WAIT #6: nam='db file scattered read' ela= 3937 file#=4 block#=655770 blocks=7 obj#=11757 tim=1020932186

WAIT #6: nam='db file sequential read' ela= 235 file#=4 block#=655777 blocks=1 obj#=11757 tim=1020933005

WAIT #6: nam='db file scattered read' ela= 613 file#=4 block#=655778 blocks=7 obj#=11757 tim=1020933760

WAIT #6: nam='db file sequential read' ela= 206 file#=4 block#=655785 blocks=1 obj#=11757 tim=1020934561

WAIT #6: nam='db file scattered read' ela= 684 file#=4 block#=655786 blocks=7 obj#=11757 tim=1020935370

WAIT #6: nam='db file sequential read' ela= 206 file#=4 block#=655793 blocks=1 obj#=11757 tim=1020936173

WAIT #6: nam='db file scattered read' ela= 582 file#=4 block#=655794 blocks=7 obj#=11757 tim=1020936889

WAIT #6: nam='db file sequential read' ela= 233 file#=4 block#=655801 blocks=1 obj#=11757 tim=1020937766

WAIT #6: nam='db file scattered read' ela= 533 file#=4 block#=655802 blocks=7 obj#=11757 tim=1020938429

WAIT #6: nam='db file sequential read' ela= 187 file#=4 block#=655809 blocks=1 obj#=11757 tim=1020939265

WAIT #6: nam='db file scattered read' ela= 585 file#=4 block#=655810 blocks=7 obj#=11757 tim=1020939984

WAIT #6: nam='db file sequential read' ela= 227 file#=4 block#=655817 blocks=1 obj#=11757 tim=1020940860

WAIT #6: nam='db file scattered read' ela= 446 file#=4 block#=655818 blocks=7 obj#=11757 tim=1020941442

WAIT #6: nam='db file sequential read' ela= 229 file#=4 block#=655825 blocks=1 obj#=11757 tim=1020942205

WAIT #6: nam='db file scattered read' ela= 591 file#=4 block#=655826 blocks=7 obj#=11757 tim=1020942921

WAIT #6: nam='db file sequential read' ela= 214 file#=4 block#=655833 blocks=1 obj#=11757 tim=1020943723

WAIT #6: nam='db file scattered read' ela= 428 file#=4 block#=655834 blocks=7 obj#=11757 tim=1020944272

WAIT #6: nam='db file sequential read' ela= 209 file#=4 block#=655841 blocks=1 obj#=11757 tim=1020945070

WAIT #6: nam='db file scattered read' ela= 577 file#=4 block#=655842 blocks=7 obj#=11757 tim=1020945788

FETCH #6:c=31250,e=118933,p=428,cr=432,cu=0,mis=0,r=15,dep=0,og=1,tim=1020946262

WAIT #6: nam='SQL*Net message from client' ela= 3974 driver id=1413697536 #bytes=1 p3=0 obj#=11757 tim=1020950291

WAIT #6: nam='db file sequential read' ela= 246 file#=4 block#=655849 blocks=1 obj#=11757 tim=1020950768

WAIT #6: nam='db file scattered read' ela= 466 file#=4 block#=655850 blocks=7 obj#=11757 tim=1020951382

WAIT #6: nam='db file sequential read' ela= 220 file#=4 block#=655857 blocks=1 obj#=11757 tim=1020952297

WAIT #6: nam='db file scattered read' ela= 611 file#=4 block#=655858 blocks=7 obj#=11757 tim=1020953051

WAIT #6: nam='db file sequential read' ela= 220 file#=4 block#=655865 blocks=1 obj#=11757 tim=1020953966

WAIT #6: nam='db file scattered read' ela= 490 file#=4 block#=655866 blocks=7 obj#=11757 tim=1020954596

WAIT #6: nam='db file sequential read' ela= 247 file#=4 block#=655873 blocks=1 obj#=11757 tim=1020955543

WAIT #6: nam='db file scattered read' ela= 646 file#=4 block#=655874 blocks=7 obj#=11757 tim=1020956331

WAIT #6: nam='db file sequential read' ela= 263 file#=4 block#=655883 blocks=1 obj#=11757 tim=1020957288

WAIT #6: nam='db file scattered read' ela= 435 file#=4 block#=655884 blocks=5 obj#=11757 tim=1020957859

WAIT #6: nam='db file sequential read' ela= 234 file#=4 block#=655889 blocks=1 obj#=11757 tim=1020958594

WAIT #6: nam='db file scattered read' ela= 623 file#=4 block#=655890 blocks=7 obj#=11757 tim=1020959354

WAIT #6: nam='SQL*Net message to client' ela= 2 driver id=1413697536 #bytes=1 p3=0 obj#=11757 tim=1020959927

WAIT #6: nam='db file sequential read' ela= 234 file#=4 block#=655897 blocks=1 obj#=11757 tim=1020960302

WAIT #6: nam='db file scattered read' ela= 466 file#=4 block#=655898 blocks=7 obj#=11757 tim=1020960892

WAIT #6: nam='db file sequential read' ela= 265 file#=4 block#=655905 blocks=1 obj#=11757 tim=1020961728

WAIT #6: nam='db file scattered read' ela= 618 file#=4 block#=655906 blocks=7 obj#=11757 tim=1020962484

WAIT #6: nam='db file sequential read' ela= 258 file#=4 block#=655913 blocks=1 obj#=11757 tim=1020963361

WAIT #6: nam='db file scattered read' ela= 489 file#=4 block#=655914 blocks=7 obj#=11757 tim=1020963981

WAIT #6: nam='db file sequential read' ela= 268 file#=4 block#=655921 blocks=1 obj#=11757 tim=1020964817

WAIT #6: nam='db file scattered read' ela= 639 file#=4 block#=655922 blocks=7 obj#=11757 tim=1020965576

WAIT #6: nam='db file sequential read' ela= 260 file#=4 block#=655929 blocks=1 obj#=11757 tim=1020966411

WAIT #6: nam='db file scattered read' ela= 8249 file#=4 block#=655930 blocks=7 obj#=11757 tim=1020974776

WAIT #6: nam='db file sequential read' ela= 212 file#=4 block#=655937 blocks=1 obj#=11757 tim=1020975543

WAIT #6: nam='db file scattered read' ela= 712 file#=4 block#=655938 blocks=7 obj#=11757 tim=1020976374

WAIT #6: nam='db file sequential read' ela= 218 file#=4 block#=655945 blocks=1 obj#=11757 tim=1020977138

WAIT #6: nam='db file scattered read' ela= 496 file#=4 block#=655946 blocks=7 obj#=11757 tim=1020977753

WAIT #6: nam='db file sequential read' ela= 252 file#=4 block#=655953 blocks=1 obj#=11757 tim=1020978594

WAIT #6: nam='db file scattered read' ela= 635 file#=4 block#=655954 blocks=7 obj#=11757 tim=1020979348

WAIT #6: nam='db file sequential read' ela= 253 file#=4 block#=655961 blocks=1 obj#=11757 tim=1020980189

WAIT #6: nam='db file scattered read' ela= 461 file#=4 block#=655962 blocks=7 obj#=11757 tim=1020980778

WAIT #6: nam='db file sequential read' ela= 204 file#=4 block#=655969 blocks=1 obj#=11757 tim=1020981576

WAIT #6: nam='db file scattered read' ela= 578 file#=4 block#=655970 blocks=7 obj#=11757 tim=1020982295

WAIT #6: nam='db file sequential read' ela= 209 file#=4 block#=655977 blocks=1 obj#=11757 tim=1020983094

WAIT #6: nam='db file scattered read' ela= 1750 file#=4 block#=655978 blocks=7 obj#=11757 tim=1020984967

WAIT #6: nam='db file sequential read' ela= 216 file#=4 block#=655985 blocks=1 obj#=11757 tim=1020985765

WAIT #6: nam='db file scattered read' ela= 709 file#=4 block#=655986 blocks=7 obj#=11757 tim=1020986599

WAIT #6: nam='db file sequential read' ela= 319 file#=4 block#=655993 blocks=1 obj#=11757 tim=1020987511

WAIT #6: nam='db file scattered read' ela= 463 file#=4 block#=655994 blocks=7 obj#=11757 tim=1020988100

WAIT #6: nam='db file sequential read' ela= 223 file#=4 block#=656001 blocks=1 obj#=11757 tim=1020988906

WAIT #6: nam='db file scattered read' ela= 589 file#=4 block#=656002 blocks=7 obj#=11757 tim=1020989620

WAIT #6: nam='db file sequential read' ela= 469 file#=4 block#=656011 blocks=1 obj#=11757 tim=1020990676

WAIT #6: nam='db file scattered read' ela= 415 file#=4 block#=656012 blocks=5 obj#=11757 tim=1020991216

WAIT #6: nam='db file sequential read' ela= 200 file#=4 block#=656017 blocks=1 obj#=11757 tim=1020991837

WAIT #6: nam='db file scattered read' ela= 588 file#=4 block#=656018 blocks=7 obj#=11757 tim=1020992554

WAIT #6: nam='db file sequential read' ela= 231 file#=4 block#=656025 blocks=1 obj#=11757 tim=1020993354

WAIT #6: nam='db file scattered read' ela= 434 file#=4 block#=656026 blocks=7 obj#=11757 tim=1020993908

WAIT #6: nam='db file sequential read' ela= 191 file#=4 block#=656033 blocks=1 obj#=11757 tim=1020994667

WAIT #6: nam='db file scattered read' ela= 582 file#=4 block#=656034 blocks=7 obj#=11757 tim=1020995386

WAIT #6: nam='db file sequential read' ela= 186 file#=4 block#=656041 blocks=1 obj#=11757 tim=1020996074

WAIT #6: nam='db file scattered read' ela= 609 file#=4 block#=656042 blocks=7 obj#=11757 tim=1020996803

WAIT #6: nam='db file sequential read' ela= 220 file#=4 block#=656049 blocks=1 obj#=11757 tim=1020997605

WAIT #6: nam='db file scattered read' ela= 590 file#=4 block#=656050 blocks=7 obj#=11757 tim=1020998320

WAIT #6: nam='db file sequential read' ela= 214 file#=4 block#=656057 blocks=1 obj#=11757 tim=1020999123

WAIT #6: nam='db file scattered read' ela= 499 file#=4 block#=656058 blocks=7 obj#=11757 tim=1020999748

WAIT #6: nam='db file sequential read' ela= 248 file#=4 block#=656065 blocks=1 obj#=11757 tim=1021000585

WAIT #6: nam='db file scattered read' ela= 639 file#=4 block#=656066 blocks=7 obj#=11757 tim=1021001347

WAIT #6: nam='db file sequential read' ela= 237 file#=4 block#=656073 blocks=1 obj#=11757 tim=1021002179

WAIT #6: nam='db file scattered read' ela= 460 file#=4 block#=656074 blocks=7 obj#=11757 tim=1021002765

WAIT #6: nam='db file sequential read' ela= 221 file#=4 block#=656081 blocks=1 obj#=11757 tim=1021003601

WAIT #6: nam='db file scattered read' ela= 593 file#=4 block#=656082 blocks=7 obj#=11757 tim=1021004319

WAIT #6: nam='db file sequential read' ela= 213 file#=4 block#=656089 blocks=1 obj#=11757 tim=1021005119

WAIT #6: nam='db file scattered read' ela= 504 file#=4 block#=656090 blocks=7 obj#=11757 tim=1021005747

WAIT #6: nam='db file sequential read' ela= 281 file#=4 block#=656097 blocks=1 obj#=11757 tim=1021006621

WAIT #6: nam='db file scattered read' ela= 650 file#=4 block#=656098 blocks=7 obj#=11757 tim=1021007414

WAIT #6: nam='db file sequential read' ela= 243 file#=4 block#=656105 blocks=1 obj#=11757 tim=1021008251

WAIT #6: nam='db file scattered read' ela= 451 file#=4 block#=656106 blocks=7 obj#=11757 tim=1021008832

WAIT #6: nam='db file sequential read' ela= 212 file#=4 block#=656113 blocks=1 obj#=11757 tim=1021009602

WAIT #6: nam='db file scattered read' ela= 600 file#=4 block#=656114 blocks=7 obj#=11757 tim=1021010618

WAIT #6: nam='db file sequential read' ela= 214 file#=4 block#=656121 blocks=1 obj#=11757 tim=1021011421

WAIT #6: nam='db file scattered read' ela= 6915 file#=4 block#=656122 blocks=7 obj#=11757 tim=1021018458

WAIT #6: nam='db file sequential read' ela= 203 file#=4 block#=656129 blocks=1 obj#=11757 tim=1021019223

WAIT #6: nam='db file scattered read' ela= 704 file#=4 block#=656130 blocks=7 obj#=11757 tim=1021020050

WAIT #6: nam='db file sequential read' ela= 236 file#=4 block#=656139 blocks=1 obj#=11757 tim=1021020851

WAIT #6: nam='db file scattered read' ela= 454 file#=4 block#=656140 blocks=5 obj#=11757 tim=1021021419

WAIT #6: nam='db file sequential read' ela= 214 file#=4 block#=656145 blocks=1 obj#=11757 tim=1021022010

WAIT #6: nam='db file scattered read' ela= 597 file#=4 block#=656146 blocks=7 obj#=11757 tim=1021022722

WAIT #6: nam='db file sequential read' ela= 494 file#=4 block#=656153 blocks=1 obj#=11757 tim=1021023744

WAIT #6: nam='db file scattered read' ela= 444 file#=4 block#=656154 blocks=7 obj#=11757 tim=1021024302

WAIT #6: nam='db file sequential read' ela= 369 file#=4 block#=656161 blocks=1 obj#=11757 tim=1021025185

WAIT #6: nam='db file scattered read' ela= 583 file#=4 block#=656162 blocks=7 obj#=11757 tim=1021025976

WAIT #6: nam='db file sequential read' ela= 229 file#=4 block#=656169 blocks=1 obj#=11757 tim=1021026734

WAIT #6: nam='db file scattered read' ela= 463 file#=4 block#=656170 blocks=7 obj#=11757 tim=1021027310

WAIT #6: nam='db file sequential read' ela= 249 file#=4 block#=656177 blocks=1 obj#=11757 tim=1021028182

WAIT #6: nam='db file scattered read' ela= 583 file#=4 block#=656178 blocks=7 obj#=11757 tim=1021028905

WAIT #6: nam='db file sequential read' ela= 257 file#=4 block#=656185 blocks=1 obj#=11757 tim=1021029812

WAIT #6: nam='db file scattered read' ela= 430 file#=4 block#=656186 blocks=7 obj#=11757 tim=1021030375

WAIT #6: nam='db file sequential read' ela= 227 file#=4 block#=656193 blocks=1 obj#=11757 tim=1021031250

WAIT #6: nam='db file scattered read' ela= 583 file#=4 block#=656194 blocks=7 obj#=11757 tim=1021031966

WAIT #6: nam='db file sequential read' ela= 236 file#=4 block#=656201 blocks=1 obj#=11757 tim=1021032843

WAIT #6: nam='db file scattered read' ela= 483 file#=4 block#=656202 blocks=7 obj#=11757 tim=1021033457

WAIT #6: nam='db file sequential read' ela= 250 file#=4 block#=656209 blocks=1 obj#=11757 tim=1021034327

WAIT #6: nam='db file scattered read' ela= 595 file#=4 block#=656210 blocks=7 obj#=11757 tim=1021035052

WAIT #6: nam='db file sequential read' ela= 233 file#=4 block#=656217 blocks=1 obj#=11757 tim=1021035884

WAIT #6: nam='db file scattered read' ela= 437 file#=4 block#=656218 blocks=7 obj#=11757 tim=1021036444

WAIT #6: nam='db file sequential read' ela= 195 file#=4 block#=656225 blocks=1 obj#=11757 tim=1021037243

WAIT #6: nam='db file scattered read' ela= 572 file#=4 block#=656226 blocks=7 obj#=11757 tim=1021037963

WAIT #6: nam='db file sequential read' ela= 189 file#=4 block#=656233 blocks=1 obj#=11757 tim=1021038760

WAIT #6: nam='db file scattered read' ela= 450 file#=4 block#=656234 blocks=7 obj#=11757 tim=1021039339

WAIT #6: nam='db file sequential read' ela= 200 file#=4 block#=656241 blocks=1 obj#=11757 tim=1021040188

WAIT #6: nam='db file scattered read' ela= 579 file#=4 block#=656242 blocks=7 obj#=11757 tim=1021040896

WAIT #6: nam='db file sequential read' ela= 202 file#=4 block#=656249 blocks=1 obj#=11757 tim=1021041701

WAIT #6: nam='db file scattered read' ela= 569 file#=4 block#=656250 blocks=7 obj#=11757 tim=1021042400

WAIT #6: nam='db file sequential read' ela= 271 file#=4 block#=656257 blocks=1 obj#=11757 tim=1021043201

WAIT #6: nam='db file scattered read' ela= 631 file#=4 block#=656258 blocks=7 obj#=11757 tim=1021043955

WAIT #6: nam='db file sequential read' ela= 269 file#=4 block#=656267 blocks=1 obj#=11757 tim=1021044794

WAIT #6: nam='db file scattered read' ela= 447 file#=4 block#=656268 blocks=5 obj#=11757 tim=1021045362

WAIT #6: nam='db file sequential read' ela= 230 file#=4 block#=656273 blocks=1 obj#=11757 tim=1021046026

WAIT #6: nam='db file scattered read' ela= 589 file#=4 block#=656274 blocks=7 obj#=11757 tim=1021046739

WAIT #6: nam='db file sequential read' ela= 196 file#=4 block#=656281 blocks=1 obj#=11757 tim=1021047507

WAIT #6: nam='db file scattered read' ela= 497 file#=4 block#=656282 blocks=7 obj#=11757 tim=1021048128

WAIT #6: nam='db file sequential read' ela= 242 file#=4 block#=656289 blocks=1 obj#=11757 tim=1021048968

WAIT #6: nam='db file scattered read' ela= 648 file#=4 block#=656290 blocks=7 obj#=11757 tim=1021049761

WAIT #6: nam='db file sequential read' ela= 263 file#=4 block#=656297 blocks=1 obj#=11757 tim=1021050638

WAIT #6: nam='db file scattered read' ela= 448 file#=4 block#=656298 blocks=7 obj#=11757 tim=1021051216

WAIT #6: nam='db file sequential read' ela= 241 file#=4 block#=656305 blocks=1 obj#=11757 tim=1021052061

WAIT #6: nam='db file scattered read' ela= 582 file#=4 block#=656306 blocks=7 obj#=11757 tim=1021052774

WAIT #6: nam='db file sequential read' ela= 231 file#=4 block#=656313 blocks=1 obj#=11757 tim=1021053606

WAIT #6: nam='db file scattered read' ela= 16742 file#=4 block#=656314 blocks=7 obj#=11757 tim=1021070476

WAIT #6: nam='db file sequential read' ela= 229 file#=4 block#=656321 blocks=1 obj#=11757 tim=1021071284

WAIT #6: nam='db file scattered read' ela= 722 file#=4 block#=656322 blocks=7 obj#=11757 tim=1021072132

WAIT #6: nam='db file sequential read' ela= 218 file#=4 block#=656329 blocks=1 obj#=11757 tim=1021072956

WAIT #6: nam='db file scattered read' ela= 410 file#=4 block#=656330 blocks=7 obj#=11757 tim=1021073491

WAIT #6: nam='db file sequential read' ela= 190 file#=4 block#=656337 blocks=1 obj#=11757 tim=1021074253

WAIT #6: nam='db file scattered read' ela= 594 file#=4 block#=656338 blocks=7 obj#=11757 tim=1021074972

FETCH #6:c=31250,e=125135,p=488,cr=488,cu=0,mis=0,r=15,dep=0,og=1,tim=1021075477

WAIT #6: nam='SQL*Net message from client' ela= 3955 driver id=1413697536 #bytes=1 p3=0 obj#=11757 tim=1021079486

WAIT #6: nam='db file sequential read' ela= 262 file#=4 block#=656345 blocks=1 obj#=11757 tim=1021079913

WAIT #6: nam='db file scattered read' ela= 447 file#=4 block#=656346 blocks=7 obj#=11757 tim=1021080498

WAIT #6: nam='db file sequential read' ela= 225 file#=4 block#=656353 blocks=1 obj#=11757 tim=1021081378

WAIT #6: nam='db file scattered read' ela= 588 file#=4 block#=656354 blocks=7 obj#=11757 tim=1021082130

WAIT #6: nam='db file sequential read' ela= 231 file#=4 block#=656361 blocks=1 obj#=11757 tim=1021083048

WAIT #6: nam='db file scattered read' ela= 441 file#=4 block#=656362 blocks=7 obj#=11757 tim=1021083626

WAIT #6: nam='db file sequential read' ela= 209 file#=4 block#=656369 blocks=1 obj#=11757 tim=1021084498

WAIT #6: nam='SQL*Net message to client' ela= 2 driver id=1413697536 #bytes=1 p3=0 obj#=11757 tim=1021084555

WAIT #6: nam='db file scattered read' ela= 585 file#=4 block#=656370 blocks=7 obj#=11757 tim=1021085253

WAIT #6: nam='db file sequential read' ela= 227 file#=4 block#=656377 blocks=1 obj#=11757 tim=1021086091

WAIT #6: nam='db file scattered read' ela= 579 file#=4 block#=656378 blocks=7 obj#=11757 tim=1021086795

WAIT #6: nam='db file sequential read' ela= 331 file#=4 block#=656385 blocks=1 obj#=11757 tim=1021087750

WAIT #6: nam='db file scattered read' ela= 682 file#=4 block#=656386 blocks=7 obj#=11757 tim=1021088775

WAIT #6: nam='db file sequential read' ela= 254 file#=4 block#=656395 blocks=1 obj#=11757 tim=1021089689

WAIT #6: nam='db file scattered read' ela= 459 file#=4 block#=656396 blocks=5 obj#=11757 tim=1021090289

WAIT #6: nam='db file sequential read' ela= 210 file#=4 block#=656401 blocks=1 obj#=11757 tim=1021090987

WAIT #6: nam='db file scattered read' ela= 604 file#=4 block#=656402 blocks=7 obj#=11757 tim=1021091740

WAIT #6: nam='db file sequential read' ela= 203 file#=4 block#=656409 blocks=1 obj#=11757 tim=1021092618

WAIT #6: nam='db file scattered read' ela= 453 file#=4 block#=656410 blocks=7 obj#=11757 tim=1021093212

WAIT #6: nam='db file sequential read' ela= 215 file#=4 block#=656417 blocks=1 obj#=11757 tim=1021094125

WAIT #6: nam='db file scattered read' ela= 597 file#=4 block#=656418 blocks=7 obj#=11757 tim=1021094880

WAIT #6: nam='db file sequential read' ela= 209 file#=4 block#=656425 blocks=1 obj#=11757 tim=1021095757

WAIT #6: nam='db file scattered read' ela= 445 file#=4 block#=656426 blocks=7 obj#=11757 tim=1021096334

WAIT #6: nam='db file sequential read' ela= 222 file#=4 block#=656433 blocks=1 obj#=11757 tim=1021097172

WAIT #6: nam='db file scattered read' ela= 587 file#=4 block#=656434 blocks=7 obj#=11757 tim=1021097888

WAIT #6: nam='db file sequential read' ela= 218 file#=4 block#=656441 blocks=1 obj#=11757 tim=1021098729

WAIT #6: nam='db file scattered read' ela= 461 file#=4 block#=656442 blocks=7 obj#=11757 tim=1021099319

WAIT #6: nam='db file sequential read' ela= 225 file#=4 block#=656449 blocks=1 obj#=11757 tim=1021100159

WAIT #6: nam='db file scattered read' ela= 622 file#=4 block#=656450 blocks=7 obj#=11757 tim=1021100915

WAIT #6: nam='db file sequential read' ela= 242 file#=4 block#=656457 blocks=1 obj#=11757 tim=1021101828

WAIT #6: nam='db file scattered read' ela= 445 file#=4 block#=656458 blocks=7 obj#=11757 tim=1021102407

WAIT #6: nam='db file sequential read' ela= 237 file#=4 block#=656465 blocks=1 obj#=11757 tim=1021103291

WAIT #6: nam='db file scattered read' ela= 617 file#=4 block#=656466 blocks=7 obj#=11757 tim=1021104045

WAIT #6: nam='db file sequential read' ela= 252 file#=4 block#=656473 blocks=1 obj#=11757 tim=1021104951

WAIT #6: nam='db file scattered read' ela= 501 file#=4 block#=656474 blocks=7 obj#=11757 tim=1021105580

WAIT #6: nam='db file sequential read' ela= 244 file#=4 block#=656481 blocks=1 obj#=11757 tim=1021106381

WAIT #6: nam='db file scattered read' ela= 642 file#=4 block#=656482 blocks=7 obj#=11757 tim=1021107175

WAIT #6: nam='db file sequential read' ela= 256 file#=4 block#=656489 blocks=1 obj#=11757 tim=1021108089

WAIT #6: nam='db file scattered read' ela= 481 file#=4 block#=656490 blocks=7 obj#=11757 tim=1021108704

WAIT #6: nam='db file sequential read' ela= 249 file#=4 block#=656497 blocks=1 obj#=11757 tim=1021109619

WAIT #6: nam='db file scattered read' ela= 621 file#=4 block#=656498 blocks=7 obj#=11757 tim=1021110376

WAIT #6: nam='db file sequential read' ela= 246 file#=4 block#=656505 blocks=1 obj#=11757 tim=1021111289

WAIT #6: nam='db file scattered read' ela= 470 file#=4 block#=656506 blocks=7 obj#=11757 tim=1021111880

WAIT #6: nam='db file sequential read' ela= 268 file#=4 block#=656513 blocks=1 obj#=11757 tim=1021112719

WAIT #6: nam='db file scattered read' ela= 2679 file#=4 block#=656514 blocks=7 obj#=11757 tim=1021115524

WAIT #6: nam='db file sequential read' ela= 230 file#=4 block#=656523 blocks=1 obj#=11757 tim=1021116324

WAIT #6: nam='db file scattered read' ela= 484 file#=4 block#=656524 blocks=5 obj#=11757 tim=1021116929

WAIT #6: nam='db file sequential read' ela= 254 file#=4 block#=656529 blocks=1 obj#=11757 tim=1021117587

WAIT #6: nam='db file scattered read' ela= 642 file#=4 block#=656530 blocks=7 obj#=11757 tim=1021118344

WAIT #6: nam='db file sequential read' ela= 275 file#=4 block#=656537 blocks=1 obj#=11757 tim=1021119298

WAIT #6: nam='db file scattered read' ela= 458 file#=4 block#=656538 blocks=7 obj#=11757 tim=1021119890

WAIT #6: nam='db file sequential read' ela= 483 file#=4 block#=656545 blocks=1 obj#=11757 tim=1021120917

WAIT #6: nam='db file scattered read' ela= 584 file#=4 block#=656546 blocks=7 obj#=11757 tim=1021121635

WAIT #6: nam='db file sequential read' ela= 206 file#=4 block#=656553 blocks=1 obj#=11757 tim=1021122363

WAIT #6: nam='db file scattered read' ela= 1859 file#=4 block#=656554 blocks=7 obj#=11757 tim=1021124339

WAIT #6: nam='db file sequential read' ela= 203 file#=4 block#=656561 blocks=1 obj#=11757 tim=1021125065

WAIT #6: nam='db file scattered read' ela= 716 file#=4 block#=656562 blocks=7 obj#=11757 tim=1021125897

WAIT #6: nam='db file sequential read' ela= 439 file#=4 block#=656569 blocks=1 obj#=11757 tim=1021127000

WAIT #6: nam='db file scattered read' ela= 435 file#=4 block#=656570 blocks=7 obj#=11757 tim=1021127555

WAIT #6: nam='db file sequential read' ela= 226 file#=4 block#=656577 blocks=1 obj#=11757 tim=1021128355

WAIT #6: nam='db file scattered read' ela= 596 file#=4 block#=656578 blocks=7 obj#=11757 tim=1021129072

WAIT #6: nam='db file sequential read' ela= 313 file#=4 block#=656585 blocks=1 obj#=11757 tim=1021129949

WAIT #6: nam='db file scattered read' ela= 454 file#=4 block#=656586 blocks=7 obj#=11757 tim=1021130523

WAIT #6: nam='db file sequential read' ela= 201 file#=4 block#=656593 blocks=1 obj#=11757 tim=1021131288

WAIT #6: nam='db file scattered read' ela= 597 file#=4 block#=656594 blocks=7 obj#=11757 tim=1021132010

WAIT #6: nam='db file sequential read' ela= 221 file#=4 block#=656601 blocks=1 obj#=11757 tim=1021132805

WAIT #6: nam='db file scattered read' ela= 434 file#=4 block#=656602 blocks=7 obj#=11757 tim=1021133360

WAIT #6: nam='db file sequential read' ela= 208 file#=4 block#=656609 blocks=1 obj#=11757 tim=1021134083

WAIT #6: nam='db file scattered read' ela= 602 file#=4 block#=656610 blocks=7 obj#=11757 tim=1021134818

WAIT #6: nam='db file sequential read' ela= 202 file#=4 block#=656617 blocks=1 obj#=11757 tim=1021135686

WAIT #6: nam='db file scattered read' ela= 709 file#=4 block#=656618 blocks=7 obj#=11757 tim=1021136517

WAIT #6: nam='db file sequential read' ela= 216 file#=4 block#=656625 blocks=1 obj#=11757 tim=1021137246

WAIT #6: nam='db file scattered read' ela= 600 file#=4 block#=656626 blocks=7 obj#=11757 tim=1021137961

WAIT #6: nam='db file sequential read' ela= 216 file#=4 block#=656633 blocks=1 obj#=11757 tim=1021138688

WAIT #6: nam='db file scattered read' ela= 515 file#=4 block#=656634 blocks=7 obj#=11757 tim=1021139317

WAIT #6: nam='db file sequential read' ela= 237 file#=4 block#=656641 blocks=1 obj#=11757 tim=1021140192

WAIT #6: nam='db file scattered read' ela= 619 file#=4 block#=656642 blocks=7 obj#=11757 tim=1021140948

WAIT #6: nam='db file sequential read' ela= 259 file#=4 block#=656651 blocks=1 obj#=11757 tim=1021141862

WAIT #6: nam='db file scattered read' ela= 435 file#=4 block#=656652 blocks=5 obj#=11757 tim=1021142428

WAIT #6: nam='db file sequential read' ela= 219 file#=4 block#=656657 blocks=1 obj#=11757 tim=1021143127

WAIT #6: nam='db file scattered read' ela= 581 file#=4 block#=656658 blocks=7 obj#=11757 tim=1021143844

WAIT #6: nam='db file sequential read' ela= 225 file#=4 block#=656665 blocks=1 obj#=11757 tim=1021144721

WAIT #6: nam='db file scattered read' ela= 465 file#=4 block#=656666 blocks=7 obj#=11757 tim=1021145313

WAIT #6: nam='db file sequential read' ela= 277 file#=4 block#=656673 blocks=1 obj#=11757 tim=1021146192

WAIT #6: nam='db file scattered read' ela= 647 file#=4 block#=656674 blocks=7 obj#=11757 tim=1021146981

WAIT #6: nam='db file sequential read' ela= 265 file#=4 block#=656681 blocks=1 obj#=11757 tim=1021147857

WAIT #6: nam='db file scattered read' ela= 453 file#=4 block#=656682 blocks=7 obj#=11757 tim=1021148433

WAIT #6: nam='db file sequential read' ela= 210 file#=4 block#=656689 blocks=1 obj#=11757 tim=1021149157

WAIT #6: nam='db file scattered read' ela= 622 file#=4 block#=656690 blocks=7 obj#=11757 tim=1021149912

WAIT #6: nam='db file sequential read' ela= 241 file#=4 block#=656697 blocks=1 obj#=11757 tim=1021150789

WAIT #6: nam='db file scattered read' ela= 500 file#=4 block#=656698 blocks=7 obj#=11757 tim=1021151422

WAIT #6: nam='db file sequential read' ela= 252 file#=4 block#=656705 blocks=1 obj#=11757 tim=1021152298

WAIT #6: nam='db file scattered read' ela= 6769 file#=4 block#=656706 blocks=7 obj#=11757 tim=1021159200

WAIT #6: nam='db file sequential read' ela= 207 file#=4 block#=656713 blocks=1 obj#=11757 tim=1021160041

WAIT #6: nam='db file scattered read' ela= 481 file#=4 block#=656714 blocks=7 obj#=11757 tim=1021160654

WAIT #6: nam='db file sequential read' ela= 263 file#=4 block#=656721 blocks=1 obj#=11757 tim=1021161604

WAIT #6: nam='db file scattered read' ela= 625 file#=4 block#=656722 blocks=7 obj#=11757 tim=1021162400

WAIT #6: nam='db file sequential read' ela= 267 file#=4 block#=656729 blocks=1 obj#=11757 tim=1021163501

WAIT #6: nam='db file scattered read' ela= 437 file#=4 block#=656730 blocks=7 obj#=11757 tim=1021164096

WAIT #6: nam='db file sequential read' ela= 207 file#=4 block#=656737 blocks=1 obj#=11757 tim=1021165127

WAIT #6: nam='db file scattered read' ela= 613 file#=4 block#=656738 blocks=7 obj#=11757 tim=1021165920

WAIT #6: nam='db file sequential read' ela= 203 file#=4 block#=656745 blocks=1 obj#=11757 tim=1021166872

WAIT #6: nam='db file scattered read' ela= 502 file#=4 block#=656746 blocks=7 obj#=11757 tim=1021167522

WAIT #6: nam='db file sequential read' ela= 241 file#=4 block#=656753 blocks=1 obj#=11757 tim=1021168510

WAIT #6: nam='db file scattered read' ela= 640 file#=4 block#=656754 blocks=7 obj#=11757 tim=1021169305

WAIT #6: nam='db file sequential read' ela= 263 file#=4 block#=656761 blocks=1 obj#=11757 tim=1021170331

WAIT #6: nam='db file scattered read' ela= 453 file#=4 block#=656762 blocks=7 obj#=11757 tim=1021170926

WAIT #6: nam='db file sequential read' ela= 243 file#=4 block#=656769 blocks=1 obj#=11757 tim=1021171859

WAIT #6: nam='db file scattered read' ela= 604 file#=4 block#=656770 blocks=7 obj#=11757 tim=1021172600

WAIT #6: nam='db file sequential read' ela= 204 file#=4 block#=656779 blocks=1 obj#=11757 tim=1021173510

WAIT #6: nam='db file scattered read' ela= 6459 file#=4 block#=656780 blocks=5 obj#=11757 tim=1021180109

FETCH #6:c=31250,e=101015,p=432,cr=431,cu=0,mis=0,r=15,dep=0,og=1,tim=1021180550

16KB

PARSING IN CURSOR #13 len=83 dep=0 uid=30 oct=3 lid=30 tim=1024186075 hv=3216823004 ad='510b945c'

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

END OF STMT

PARSE #13:c=15625,e=18270,p=1,cr=99,cu=0,mis=1,r=0,dep=0,og=1,tim=1024186071

EXEC #13:c=0,e=34,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,tim=1024186257

WAIT #13: nam='SQL*Net message to client' ela= 3 driver id=1413697536 #bytes=1 p3=0 obj#=11767 tim=1024186294

WAIT #13: nam='db file sequential read' ela= 319 file#=4 block#=323592 blocks=1 obj#=11767 tim=1024186677

WAIT #13: nam='db file sequential read' ela= 22252 file#=4 block#=324032 blocks=1 obj#=11767 tim=1024208974

WAIT #13: nam='db file sequential read' ela= 260 file#=4 block#=323593 blocks=1 obj#=11767 tim=1024209271

WAIT #13: nam='db file scattered read' ela= 543 file#=4 block#=323594 blocks=3 obj#=11767 tim=1024210056

WAIT #13: nam='db file sequential read' ela= 303 file#=4 block#=323597 blocks=1 obj#=11767 tim=1024210896

WAIT #13: nam='db file scattered read' ela= 3503 file#=4 block#=323598 blocks=3 obj#=11767 tim=1024214604

WAIT #13: nam='db file sequential read' ela= 278 file#=4 block#=323601 blocks=1 obj#=11767 tim=1024215411

WAIT #13: nam='db file scattered read' ela= 616 file#=4 block#=323602 blocks=3 obj#=11767 tim=1024216240

WAIT #13: nam='db file sequential read' ela= 274 file#=4 block#=323606 blocks=1 obj#=11767 tim=1024217049

WAIT #13: nam='db file scattered read' ela= 413 file#=4 block#=323607 blocks=2 obj#=11767 tim=1024217669

FETCH #13:c=0,e=31566,p=17,cr=17,cu=0,mis=0,r=1,dep=0,og=1,tim=1024217894

WAIT #13: nam='SQL*Net message from client' ela= 17848 driver id=1413697536 #bytes=1 p3=0 obj#=11767 tim=1024235802

WAIT #13: nam='db file sequential read' ela= 327 file#=4 block#=323609 blocks=1 obj#=11767 tim=1024236357

WAIT #13: nam='db file scattered read' ela= 603 file#=4 block#=323610 blocks=3 obj#=11767 tim=1024237180

WAIT #13: nam='db file sequential read' ela= 305 file#=4 block#=323613 blocks=1 obj#=11767 tim=1024238018

WAIT #13: nam='db file scattered read' ela= 446 file#=4 block#=323614 blocks=3 obj#=11767 tim=1024238671

WAIT #13: nam='db file sequential read' ela= 274 file#=4 block#=323617 blocks=1 obj#=11767 tim=1024239468

WAIT #13: nam='db file scattered read' ela= 524 file#=4 block#=323618 blocks=3 obj#=11767 tim=1024240195

WAIT #13: nam='db file sequential read' ela= 244 file#=4 block#=323622 blocks=1 obj#=11767 tim=1024240955

WAIT #13: nam='db file scattered read' ela= 496 file#=4 block#=323623 blocks=2 obj#=11767 tim=1024241664

WAIT #13: nam='SQL*Net message to client' ela= 2 driver id=1413697536 #bytes=1 p3=0 obj#=11767 tim=1024241790

WAIT #13: nam='db file sequential read' ela= 291 file#=4 block#=323625 blocks=1 obj#=11767 tim=1024242345

WAIT #13: nam='db file scattered read' ela= 771 file#=4 block#=323626 blocks=3 obj#=11767 tim=1024243319

WAIT #13: nam='db file sequential read' ela= 308 file#=4 block#=323629 blocks=1 obj#=11767 tim=1024244127

WAIT #13: nam='db file scattered read' ela= 456 file#=4 block#=323630 blocks=3 obj#=11767 tim=1024244778

WAIT #13: nam='db file sequential read' ela= 275 file#=4 block#=323633 blocks=1 obj#=11767 tim=1024245578

WAIT #13: nam='db file scattered read' ela= 552 file#=4 block#=323634 blocks=3 obj#=11767 tim=1024246324

WAIT #13: nam='db file sequential read' ela= 258 file#=4 block#=323638 blocks=1 obj#=11767 tim=1024247103

WAIT #13: nam='db file scattered read' ela= 532 file#=4 block#=323639 blocks=2 obj#=11767 tim=1024247830

WAIT #13: nam='db file sequential read' ela= 347 file#=4 block#=323641 blocks=1 obj#=11767 tim=1024248531

WAIT #13: nam='db file scattered read' ela= 654 file#=4 block#=323642 blocks=3 obj#=11767 tim=1024249388

WAIT #13: nam='db file sequential read' ela= 283 file#=4 block#=323645 blocks=1 obj#=11767 tim=1024250190

WAIT #13: nam='db file scattered read' ela= 430 file#=4 block#=323646 blocks=3 obj#=11767 tim=1024250812

WAIT #13: nam='db file sequential read' ela= 302 file#=4 block#=323649 blocks=1 obj#=11767 tim=1024251619

WAIT #13: nam='db file scattered read' ela= 541 file#=4 block#=323650 blocks=3 obj#=11767 tim=1024252358

WAIT #13: nam='db file sequential read' ela= 270 file#=4 block#=323654 blocks=1 obj#=11767 tim=1024253136

WAIT #13: nam='db file scattered read' ela= 420 file#=4 block#=323655 blocks=2 obj#=11767 tim=1024253750

WAIT #13: nam='db file sequential read' ela= 295 file#=4 block#=323657 blocks=1 obj#=11767 tim=1024254406

WAIT #13: nam='db file scattered read' ela= 549 file#=4 block#=323658 blocks=3 obj#=11767 tim=1024255163

WAIT #13: nam='db file sequential read' ela= 302 file#=4 block#=323661 blocks=1 obj#=11767 tim=1024256003

WAIT #13: nam='db file scattered read' ela= 449 file#=4 block#=323662 blocks=3 obj#=11767 tim=1024256659

WAIT #13: nam='db file sequential read' ela= 295 file#=4 block#=323665 blocks=1 obj#=11767 tim=1024257499

WAIT #13: nam='db file scattered read' ela= 549 file#=4 block#=323666 blocks=3 obj#=11767 tim=1024258254

WAIT #13: nam='db file sequential read' ela= 309 file#=4 block#=323669 blocks=1 obj#=11767 tim=1024259086

WAIT #13: nam='db file scattered read' ela= 485 file#=4 block#=323670 blocks=3 obj#=11767 tim=1024259785

WAIT #13: nam='db file sequential read' ela= 302 file#=4 block#=323673 blocks=1 obj#=11767 tim=1024260633

WAIT #13: nam='db file scattered read' ela= 571 file#=4 block#=323674 blocks=3 obj#=11767 tim=1024261423

WAIT #13: nam='db file sequential read' ela= 12632 file#=4 block#=323677 blocks=1 obj#=11767 tim=1024274604

WAIT #13: nam='db file scattered read' ela= 466 file#=4 block#=323678 blocks=3 obj#=11767 tim=1024275289

WAIT #13: nam='db file sequential read' ela= 308 file#=4 block#=323681 blocks=1 obj#=11767 tim=1024276162

WAIT #13: nam='db file scattered read' ela= 574 file#=4 block#=323682 blocks=3 obj#=11767 tim=1024276950

WAIT #13: nam='db file sequential read' ela= 320 file#=4 block#=323685 blocks=1 obj#=11767 tim=1024277831

WAIT #13: nam='db file scattered read' ela= 448 file#=4 block#=323686 blocks=3 obj#=11767 tim=1024278499

WAIT #13: nam='db file sequential read' ela= 294 file#=4 block#=323689 blocks=1 obj#=11767 tim=1024279338

WAIT #13: nam='db file scattered read' ela= 537 file#=4 block#=323690 blocks=3 obj#=11767 tim=1024280101

WAIT #13: nam='db file sequential read' ela= 253 file#=4 block#=323693 blocks=1 obj#=11767 tim=1024280906

WAIT #13: nam='db file scattered read' ela= 461 file#=4 block#=323694 blocks=3 obj#=11767 tim=1024281586

WAIT #13: nam='db file sequential read' ela= 331 file#=4 block#=323697 blocks=1 obj#=11767 tim=1024282462

WAIT #13: nam='db file scattered read' ela= 585 file#=4 block#=323698 blocks=3 obj#=11767 tim=1024283249

WAIT #13: nam='db file sequential read' ela= 344 file#=4 block#=323701 blocks=1 obj#=11767 tim=1024284094

WAIT #13: nam='db file scattered read' ela= 428 file#=4 block#=323702 blocks=3 obj#=11767 tim=1024284724

WAIT #13: nam='db file sequential read' ela= 278 file#=4 block#=323705 blocks=1 obj#=11767 tim=1024285490

WAIT #13: nam='db file scattered read' ela= 520 file#=4 block#=323706 blocks=3 obj#=11767 tim=1024286211

WAIT #13: nam='db file sequential read' ela= 255 file#=4 block#=323709 blocks=1 obj#=11767 tim=1024286975

WAIT #13: nam='db file scattered read' ela= 492 file#=4 block#=323710 blocks=3 obj#=11767 tim=1024287661

WAIT #13: nam='db file sequential read' ela= 346 file#=4 block#=323713 blocks=1 obj#=11767 tim=1024288534

WAIT #13: nam='db file scattered read' ela= 589 file#=4 block#=323714 blocks=3 obj#=11767 tim=1024289329

WAIT #13: nam='db file sequential read' ela= 7561 file#=4 block#=323718 blocks=1 obj#=11767 tim=1024297420

WAIT #13: nam='db file scattered read' ela= 440 file#=4 block#=323719 blocks=2 obj#=11767 tim=1024298063

WAIT #13: nam='db file sequential read' ela= 310 file#=4 block#=323721 blocks=1 obj#=11767 tim=1024298732

WAIT #13: nam='db file scattered read' ela= 560 file#=4 block#=323722 blocks=3 obj#=11767 tim=1024299515

WAIT #13: nam='db file sequential read' ela= 289 file#=4 block#=323725 blocks=1 obj#=11767 tim=1024300320

WAIT #13: nam='db file scattered read' ela= 417 file#=4 block#=323726 blocks=3 obj#=11767 tim=1024300940

WAIT #13: nam='db file sequential read' ela= 272 file#=4 block#=323729 blocks=1 obj#=11767 tim=1024301753

WAIT #13: nam='db file scattered read' ela= 530 file#=4 block#=323730 blocks=3 obj#=11767 tim=1024302503

WAIT #13: nam='db file sequential read' ela= 279 file#=4 block#=323733 blocks=1 obj#=11767 tim=1024303341

WAIT #13: nam='db file scattered read' ela= 447 file#=4 block#=323734 blocks=3 obj#=11767 tim=1024303999

WAIT #13: nam='db file sequential read' ela= 306 file#=4 block#=323737 blocks=1 obj#=11767 tim=1024304874

WAIT #13: nam='db file scattered read' ela= 558 file#=4 block#=323738 blocks=3 obj#=11767 tim=1024305663

WAIT #13: nam='db file sequential read' ela= 281 file#=4 block#=323741 blocks=1 obj#=11767 tim=1024306511

WAIT #13: nam='db file scattered read' ela= 447 file#=4 block#=323742 blocks=3 obj#=11767 tim=1024307165

WAIT #13: nam='db file sequential read' ela= 253 file#=4 block#=323745 blocks=1 obj#=11767 tim=1024307938

WAIT #13: nam='db file scattered read' ela= 514 file#=4 block#=323746 blocks=3 obj#=11767 tim=1024308652

WAIT #13: nam='db file sequential read' ela= 273 file#=4 block#=323749 blocks=1 obj#=11767 tim=1024309455

WAIT #13: nam='db file scattered read' ela= 455 file#=4 block#=323750 blocks=3 obj#=11767 tim=1024310110

WAIT #13: nam='db file sequential read' ela= 288 file#=4 block#=323753 blocks=1 obj#=11767 tim=1024310922

WAIT #13: nam='db file scattered read' ela= 569 file#=4 block#=323754 blocks=3 obj#=11767 tim=1024311702

WAIT #13: nam='db file sequential read' ela= 302 file#=4 block#=323757 blocks=1 obj#=11767 tim=1024312517

WAIT #13: nam='db file scattered read' ela= 452 file#=4 block#=323758 blocks=3 obj#=11767 tim=1024313163

WAIT #13: nam='db file sequential read' ela= 278 file#=4 block#=323761 blocks=1 obj#=11767 tim=1024313973

WAIT #13: nam='db file scattered read' ela= 616 file#=4 block#=323762 blocks=3 obj#=11767 tim=1024314784

WAIT #13: nam='db file sequential read' ela= 273 file#=4 block#=323765 blocks=1 obj#=11767 tim=1024315592

WAIT #13: nam='db file scattered read' ela= 8154 file#=4 block#=323766 blocks=3 obj#=11767 tim=1024323953

WAIT #13: nam='db file sequential read' ela= 791 file#=4 block#=323769 blocks=1 obj#=11767 tim=1024325261

WAIT #13: nam='db file scattered read' ela= 847 file#=4 block#=323770 blocks=3 obj#=11767 tim=1024326317

WAIT #13: nam='db file sequential read' ela= 259 file#=4 block#=323773 blocks=1 obj#=11767 tim=1024327126

WAIT #13: nam='db file scattered read' ela= 434 file#=4 block#=323774 blocks=3 obj#=11767 tim=1024327768

WAIT #13: nam='db file sequential read' ela= 285 file#=4 block#=323777 blocks=1 obj#=11767 tim=1024328571

WAIT #13: nam='db file scattered read' ela= 543 file#=4 block#=323778 blocks=3 obj#=11767 tim=1024329318

WAIT #13: nam='db file sequential read' ela= 264 file#=4 block#=323782 blocks=1 obj#=11767 tim=1024330137

WAIT #13: nam='db file scattered read' ela= 414 file#=4 block#=323783 blocks=2 obj#=11767 tim=1024330776

WAIT #13: nam='db file sequential read' ela= 269 file#=4 block#=323785 blocks=1 obj#=11767 tim=1024331412

WAIT #13: nam='db file scattered read' ela= 538 file#=4 block#=323786 blocks=3 obj#=11767 tim=1024332159

WAIT #13: nam='db file sequential read' ela= 278 file#=4 block#=323789 blocks=1 obj#=11767 tim=1024332956

WAIT #13: nam='db file scattered read' ela= 458 file#=4 block#=323790 blocks=3 obj#=11767 tim=1024333613

WAIT #13: nam='db file sequential read' ela= 309 file#=4 block#=323793 blocks=1 obj#=11767 tim=1024334447

WAIT #13: nam='db file scattered read' ela= 565 file#=4 block#=323794 blocks=3 obj#=11767 tim=1024335211

WAIT #13: nam='db file sequential read' ela= 303 file#=4 block#=323797 blocks=1 obj#=11767 tim=1024336040

WAIT #13: nam='db file scattered read' ela= 435 file#=4 block#=323798 blocks=3 obj#=11767 tim=1024336673

WAIT #13: nam='db file sequential read' ela= 310 file#=4 block#=323801 blocks=1 obj#=11767 tim=1024337557

WAIT #13: nam='db file scattered read' ela= 564 file#=4 block#=323802 blocks=3 obj#=11767 tim=1024338343

WAIT #13: nam='db file sequential read' ela= 305 file#=4 block#=323805 blocks=1 obj#=11767 tim=1024339216

WAIT #13: nam='db file scattered read' ela= 474 file#=4 block#=323806 blocks=3 obj#=11767 tim=1024339916

WAIT #13: nam='db file sequential read' ela= 337 file#=4 block#=323809 blocks=1 obj#=11767 tim=1024340822

WAIT #13: nam='db file scattered read' ela= 547 file#=4 block#=323810 blocks=3 obj#=11767 tim=1024341590

WAIT #13: nam='db file sequential read' ela= 340 file#=4 block#=323813 blocks=1 obj#=11767 tim=1024342492

WAIT #13: nam='db file scattered read' ela= 468 file#=4 block#=323814 blocks=3 obj#=11767 tim=1024343164

WAIT #13: nam='db file sequential read' ela= 7563 file#=4 block#=323817 blocks=1 obj#=11767 tim=1024351272

WAIT #13: nam='db file scattered read' ela= 823 file#=4 block#=323818 blocks=3 obj#=11767 tim=1024352346

WAIT #13: nam='db file sequential read' ela= 268 file#=4 block#=323821 blocks=1 obj#=11767 tim=1024353156

WAIT #13: nam='db file scattered read' ela= 499 file#=4 block#=323822 blocks=3 obj#=11767 tim=1024353875

WAIT #13: nam='db file sequential read' ela= 321 file#=4 block#=323825 blocks=1 obj#=11767 tim=1024354750

FETCH #13:c=31250,e=119085,p=212,cr=213,cu=0,mis=0,r=15,dep=0,og=1,tim=1024354937

WAIT #13: nam='SQL*Net message from client' ela= 3925 driver id=1413697536 #bytes=1 p3=0 obj#=11767 tim=1024358914

WAIT #13: nam='db file scattered read' ela= 612 file#=4 block#=323826 blocks=3 obj#=11767 tim=1024359642

WAIT #13: nam='db file sequential read' ela= 321 file#=4 block#=323829 blocks=1 obj#=11767 tim=1024360596

WAIT #13: nam='db file scattered read' ela= 425 file#=4 block#=323830 blocks=3 obj#=11767 tim=1024361263

WAIT #13: nam='db file sequential read' ela= 263 file#=4 block#=323833 blocks=1 obj#=11767 tim=1024362148

WAIT #13: nam='db file scattered read' ela= 507 file#=4 block#=323834 blocks=3 obj#=11767 tim=1024362894

WAIT #13: nam='db file sequential read' ela= 263 file#=4 block#=323837 blocks=1 obj#=11767 tim=1024363816

WAIT #13: nam='db file scattered read' ela= 5647 file#=4 block#=323838 blocks=3 obj#=11767 tim=1024369696

WAIT #13: nam='db file sequential read' ela= 267 file#=4 block#=323841 blocks=1 obj#=11767 tim=1024370586

WAIT #13: nam='db file scattered read' ela= 627 file#=4 block#=323842 blocks=3 obj#=11767 tim=1024371447

WAIT #13: nam='db file sequential read' ela= 254 file#=4 block#=323846 blocks=1 obj#=11767 tim=1024372328

WAIT #13: nam='db file scattered read' ela= 438 file#=4 block#=323847 blocks=2 obj#=11767 tim=1024373007

WAIT #13: nam='db file sequential read' ela= 280 file#=4 block#=323849 blocks=1 obj#=11767 tim=1024373711

WAIT #13: nam='SQL*Net message to client' ela= 2 driver id=1413697536 #bytes=1 p3=0 obj#=11767 tim=1024373854

WAIT #13: nam='db file scattered read' ela= 538 file#=4 block#=323850 blocks=3 obj#=11767 tim=1024374503

WAIT #13: nam='db file sequential read' ela= 301 file#=4 block#=323853 blocks=1 obj#=11767 tim=1024375308

WAIT #13: nam='db file scattered read' ela= 419 file#=4 block#=323854 blocks=3 obj#=11767 tim=1024375922

WAIT #13: nam='db file sequential read' ela= 281 file#=4 block#=323857 blocks=1 obj#=11767 tim=1024376721

WAIT #13: nam='db file scattered read' ela= 548 file#=4 block#=323858 blocks=3 obj#=11767 tim=1024377471

WAIT #13: nam='db file sequential read' ela= 257 file#=4 block#=323861 blocks=1 obj#=11767 tim=1024378251

WAIT #13: nam='db file scattered read' ela= 462 file#=4 block#=323862 blocks=3 obj#=11767 tim=1024378907

WAIT #13: nam='db file sequential read' ela= 309 file#=4 block#=323865 blocks=1 obj#=11767 tim=1024379743

WAIT #13: nam='db file scattered read' ela= 568 file#=4 block#=323866 blocks=3 obj#=11767 tim=1024380501

WAIT #13: nam='db file sequential read' ela= 296 file#=4 block#=323869 blocks=1 obj#=11767 tim=1024381312

WAIT #13: nam='db file scattered read' ela= 447 file#=4 block#=323870 blocks=3 obj#=11767 tim=1024381956

WAIT #13: nam='db file sequential read' ela= 256 file#=4 block#=323873 blocks=1 obj#=11767 tim=1024382690

WAIT #13: nam='db file scattered read' ela= 540 file#=4 block#=323874 blocks=3 obj#=11767 tim=1024383429

WAIT #13: nam='db file sequential read' ela= 249 file#=4 block#=323877 blocks=1 obj#=11767 tim=1024384168

WAIT #13: nam='db file scattered read' ela= 3728 file#=4 block#=323878 blocks=3 obj#=11767 tim=1024388085

WAIT #13: nam='db file sequential read' ela= 302 file#=4 block#=323881 blocks=1 obj#=11767 tim=1024388898

WAIT #13: nam='db file scattered read' ela= 618 file#=4 block#=323882 blocks=3 obj#=11767 tim=1024389725

WAIT #13: nam='db file sequential read' ela= 280 file#=4 block#=323885 blocks=1 obj#=11767 tim=1024390529

WAIT #13: nam='db file scattered read' ela= 492 file#=4 block#=323886 blocks=3 obj#=11767 tim=1024391218

WAIT #13: nam='db file sequential read' ela= 306 file#=4 block#=323889 blocks=1 obj#=11767 tim=1024392050

WAIT #13: nam='db file scattered read' ela= 560 file#=4 block#=323890 blocks=3 obj#=11767 tim=1024392807

WAIT #13: nam='db file sequential read' ela= 312 file#=4 block#=323893 blocks=1 obj#=11767 tim=1024393643

WAIT #13: nam='db file scattered read' ela= 684 file#=4 block#=323894 blocks=3 obj#=11767 tim=1024394542

WAIT #13: nam='db file sequential read' ela= 256 file#=4 block#=323897 blocks=1 obj#=11767 tim=1024395317

WAIT #13: nam='db file scattered read' ela= 534 file#=4 block#=323898 blocks=3 obj#=11767 tim=1024396061

WAIT #13: nam='db file sequential read' ela= 279 file#=4 block#=323901 blocks=1 obj#=11767 tim=1024396866

WAIT #13: nam='db file scattered read' ela= 477 file#=4 block#=323902 blocks=3 obj#=11767 tim=1024397550

WAIT #13: nam='db file sequential read' ela= 326 file#=4 block#=323905 blocks=1 obj#=11767 tim=1024398387

WAIT #13: nam='db file scattered read' ela= 579 file#=4 block#=323906 blocks=3 obj#=11767 tim=1024399172

WAIT #13: nam='db file sequential read' ela= 294 file#=4 block#=323910 blocks=1 obj#=11767 tim=1024399989

WAIT #13: nam='db file scattered read' ela= 413 file#=4 block#=323911 blocks=2 obj#=11767 tim=1024400600

WAIT #13: nam='db file sequential read' ela= 281 file#=4 block#=323913 blocks=1 obj#=11767 tim=1024401228

WAIT #13: nam='db file scattered read' ela= 517 file#=4 block#=323914 blocks=3 obj#=11767 tim=1024401949

WAIT #13: nam='db file sequential read' ela= 261 file#=4 block#=323917 blocks=1 obj#=11767 tim=1024402711

WAIT #13: nam='db file scattered read' ela= 489 file#=4 block#=323918 blocks=3 obj#=11767 tim=1024403394

WAIT #13: nam='db file sequential read' ela= 325 file#=4 block#=323921 blocks=1 obj#=11767 tim=1024404232

WAIT #13: nam='db file scattered read' ela= 594 file#=4 block#=323922 blocks=3 obj#=11767 tim=1024405021

WAIT #13: nam='db file sequential read' ela= 319 file#=4 block#=323925 blocks=1 obj#=11767 tim=1024405863

WAIT #13: nam='db file scattered read' ela= 455 file#=4 block#=323926 blocks=3 obj#=11767 tim=1024406531

WAIT #13: nam='db file sequential read' ela= 300 file#=4 block#=323929 blocks=1 obj#=11767 tim=1024407368

WAIT #13: nam='db file scattered read' ela= 553 file#=4 block#=323930 blocks=3 obj#=11767 tim=1024408126

WAIT #13: nam='db file sequential read' ela= 302 file#=4 block#=323933 blocks=1 obj#=11767 tim=1024408965

WAIT #13: nam='db file scattered read' ela= 4196 file#=4 block#=323934 blocks=3 obj#=11767 tim=1024413368

WAIT #13: nam='db file sequential read' ela= 277 file#=4 block#=323937 blocks=1 obj#=11767 tim=1024414174

WAIT #13: nam='db file scattered read' ela= 629 file#=4 block#=323938 blocks=3 obj#=11767 tim=1024415006

WAIT #13: nam='db file sequential read' ela= 269 file#=4 block#=323941 blocks=1 obj#=11767 tim=1024415817

WAIT #13: nam='db file scattered read' ela= 439 file#=4 block#=323942 blocks=3 obj#=11767 tim=1024416473

WAIT #13: nam='db file sequential read' ela= 309 file#=4 block#=323945 blocks=1 obj#=11767 tim=1024417318

WAIT #13: nam='db file scattered read' ela= 573 file#=4 block#=323946 blocks=3 obj#=11767 tim=1024418105

WAIT #13: nam='db file sequential read' ela= 311 file#=4 block#=323949 blocks=1 obj#=11767 tim=1024418941

WAIT #13: nam='db file scattered read' ela= 402 file#=4 block#=323950 blocks=3 obj#=11767 tim=1024419560

WAIT #13: nam='db file sequential read' ela= 263 file#=4 block#=323953 blocks=1 obj#=11767 tim=1024420363

WAIT #13: nam='db file scattered read' ela= 511 file#=4 block#=323954 blocks=3 obj#=11767 tim=1024421076

WAIT #13: nam='db file sequential read' ela= 274 file#=4 block#=323957 blocks=1 obj#=11767 tim=1024421851

WAIT #13: nam='db file scattered read' ela= 5925 file#=4 block#=323958 blocks=3 obj#=11767 tim=1024427971

WAIT #13: nam='db file sequential read' ela= 776 file#=4 block#=323961 blocks=1 obj#=11767 tim=1024429278

WAIT #13: nam='db file scattered read' ela= 888 file#=4 block#=323962 blocks=3 obj#=11767 tim=1024430362

WAIT #13: nam='db file sequential read' ela= 280 file#=4 block#=323965 blocks=1 obj#=11767 tim=1024431168

WAIT #13: nam='db file scattered read' ela= 453 file#=4 block#=323966 blocks=3 obj#=11767 tim=1024431820

WAIT #13: nam='db file sequential read' ela= 275 file#=4 block#=323969 blocks=1 obj#=11767 tim=1024432592

WAIT #13: nam='db file scattered read' ela= 563 file#=4 block#=323970 blocks=3 obj#=11767 tim=1024433336

WAIT #13: nam='db file sequential read' ela= 277 file#=4 block#=323974 blocks=1 obj#=11767 tim=1024434067

WAIT #13: nam='db file scattered read' ela= 397 file#=4 block#=323975 blocks=2 obj#=11767 tim=1024434647

WAIT #13: nam='db file sequential read' ela= 278 file#=4 block#=323977 blocks=1 obj#=11767 tim=1024435234

WAIT #13: nam='db file scattered read' ela= 528 file#=4 block#=323978 blocks=3 obj#=11767 tim=1024435945

WAIT #13: nam='db file sequential read' ela= 277 file#=4 block#=323981 blocks=1 obj#=11767 tim=1024436671

WAIT #13: nam='db file scattered read' ela= 465 file#=4 block#=323982 blocks=3 obj#=11767 tim=1024437319

WAIT #13: nam='db file sequential read' ela= 288 file#=4 block#=323985 blocks=1 obj#=11767 tim=1024438055

WAIT #13: nam='db file scattered read' ela= 567 file#=4 block#=323986 blocks=3 obj#=11767 tim=1024438827

WAIT #13: nam='db file sequential read' ela= 310 file#=4 block#=323989 blocks=1 obj#=11767 tim=1024439750

WAIT #13: nam='db file scattered read' ela= 425 file#=4 block#=323990 blocks=3 obj#=11767 tim=1024440422

WAIT #13: nam='db file sequential read' ela= 252 file#=4 block#=323993 blocks=1 obj#=11767 tim=1024441259

WAIT #13: nam='db file scattered read' ela= 526 file#=4 block#=323994 blocks=3 obj#=11767 tim=1024442008

WAIT #13: nam='db file sequential read' ela= 250 file#=4 block#=323997 blocks=1 obj#=11767 tim=1024442852

WAIT #13: nam='db file scattered read' ela= 461 file#=4 block#=323998 blocks=3 obj#=11767 tim=1024443542

WAIT #13: nam='db file sequential read' ela= 335 file#=4 block#=324001 blocks=1 obj#=11767 tim=1024444417

WAIT #13: nam='db file scattered read' ela= 571 file#=4 block#=324002 blocks=3 obj#=11767 tim=1024445204

WAIT #13: nam='db file sequential read' ela= 337 file#=4 block#=324005 blocks=1 obj#=11767 tim=1024446085

WAIT #13: nam='db file scattered read' ela= 465 file#=4 block#=324006 blocks=3 obj#=11767 tim=1024446756

WAIT #13: nam='db file sequential read' ela= 296 file#=4 block#=324009 blocks=1 obj#=11767 tim=1024447596

WAIT #13: nam='db file scattered read' ela= 542 file#=4 block#=324010 blocks=3 obj#=11767 tim=1024448348

WAIT #13: nam='db file sequential read' ela= 325 file#=4 block#=324013 blocks=1 obj#=11767 tim=1024449233

WAIT #13: nam='db file scattered read' ela= 477 file#=4 block#=324014 blocks=3 obj#=11767 tim=1024449917

WAIT #13: nam='db file sequential read' ela= 342 file#=4 block#=324017 blocks=1 obj#=11767 tim=1024450797

WAIT #13: nam='db file scattered read' ela= 573 file#=4 block#=324018 blocks=3 obj#=11767 tim=1024451578

WAIT #13: nam='db file sequential read' ela= 337 file#=4 block#=324021 blocks=1 obj#=11767 tim=1024452461

WAIT #13: nam='db file scattered read' ela= 5088 file#=4 block#=324022 blocks=3 obj#=11767 tim=1024457763

WAIT #13: nam='db file sequential read' ela= 256 file#=4 block#=324025 blocks=1 obj#=11767 tim=1024458570

WAIT #13: nam='db file scattered read' ela= 642 file#=4 block#=324026 blocks=3 obj#=11767 tim=1024459427

WAIT #13: nam='db file scattered read' ela= 393 file#=4 block#=324029 blocks=3 obj#=11767 tim=1024460340

WAIT #13: nam='db file sequential read' ela= 7291 file#=4 block#=324033 blocks=1 obj#=11767 tim=1024468137

WAIT #13: nam='db file scattered read' ela= 852 file#=4 block#=324034 blocks=3 obj#=11767 tim=1024469197

WAIT #13: nam='db file sequential read' ela= 247 file#=4 block#=324038 blocks=1 obj#=11767 tim=1024469964

WAIT #13: nam='db file scattered read' ela= 408 file#=4 block#=324039 blocks=2 obj#=11767 tim=1024470579

WAIT #13: nam='db file sequential read' ela= 278 file#=4 block#=324041 blocks=1 obj#=11767 tim=1024471207

WAIT #13: nam='db file scattered read' ela= 535 file#=4 block#=324042 blocks=3 obj#=11767 tim=1024471951

WAIT #13: nam='db file sequential read' ela= 265 file#=4 block#=324045 blocks=1 obj#=11767 tim=1024472755

WAIT #13: nam='db file scattered read' ela= 400 file#=4 block#=324046 blocks=3 obj#=11767 tim=1024473371

WAIT #13: nam='db file sequential read' ela= 264 file#=4 block#=324049 blocks=1 obj#=11767 tim=1024474179

WAIT #13: nam='db file scattered read' ela= 538 file#=4 block#=324050 blocks=3 obj#=11767 tim=1024474922

WAIT #13: nam='db file sequential read' ela= 264 file#=4 block#=324053 blocks=1 obj#=11767 tim=1024475735

WAIT #13: nam='db file scattered read' ela= 486 file#=4 block#=324054 blocks=3 obj#=11767 tim=1024476429

WAIT #13: nam='db file sequential read' ela= 293 file#=4 block#=324057 blocks=1 obj#=11767 tim=1024477263

WAIT #13: nam='db file scattered read' ela= 545 file#=4 block#=324058 blocks=3 obj#=11767 tim=1024478014

WAIT #13: nam='db file sequential read' ela= 295 file#=4 block#=324061 blocks=1 obj#=11767 tim=1024478821

WAIT #13: nam='db file scattered read' ela= 428 file#=4 block#=324062 blocks=3 obj#=11767 tim=1024479444

WAIT #13: nam='db file sequential read' ela= 278 file#=4 block#=324065 blocks=1 obj#=11767 tim=1024480241

WAIT #13: nam='db file scattered read' ela= 550 file#=4 block#=324066 blocks=3 obj#=11767 tim=1024480987

WAIT #13: nam='db file sequential read' ela= 476 file#=4 block#=324069 blocks=1 obj#=11767 tim=1024481960

WAIT #13: nam='db file scattered read' ela= 445 file#=4 block#=324070 blocks=3 obj#=11767 tim=1024482613

FETCH #13:c=31250,e=123807,p=242,cr=241,cu=0,mis=0,r=15,dep=0,og=1,tim=1024482772

WAIT #13: nam='SQL*Net message from client' ela= 3935 driver id=1413697536 #bytes=1 p3=0 obj#=11767 tim=1024486760

WAIT #13: nam='db file sequential read' ela= 309 file#=4 block#=324073 blocks=1 obj#=11767 tim=1024487564

WAIT #13: nam='db file scattered read' ela= 569 file#=4 block#=324074 blocks=3 obj#=11767 tim=1024488374

WAIT #13: nam='db file sequential read' ela= 306 file#=4 block#=324077 blocks=1 obj#=11767 tim=1024489265

WAIT #13: nam='db file scattered read' ela= 490 file#=4 block#=324078 blocks=3 obj#=11767 tim=1024489986

WAIT #13: nam='db file sequential read' ela= 309 file#=4 block#=324081 blocks=1 obj#=11767 tim=1024490874

WAIT #13: nam='db file scattered read' ela= 553 file#=4 block#=324082 blocks=3 obj#=11767 tim=1024491658

WAIT #13: nam='SQL*Net message to client' ela= 2 driver id=1413697536 #bytes=1 p3=0 obj#=11767 tim=1024491913

WAIT #13: nam='db file sequential read' ela= 312 file#=4 block#=324085 blocks=1 obj#=11767 tim=1024492572

WAIT #13: nam='db file scattered read' ela= 450 file#=4 block#=324086 blocks=3 obj#=11767 tim=1024493240

WAIT #13: nam='db file sequential read' ela= 300 file#=4 block#=324089 blocks=1 obj#=11767 tim=1024494083

WAIT #13: nam='db file scattered read' ela= 567 file#=4 block#=324090 blocks=3 obj#=11767 tim=1024494861

WAIT #13: nam='db file sequential read' ela= 305 file#=4 block#=324093 blocks=1 obj#=11767 tim=1024495716

WAIT #13: nam='db file scattered read' ela= 461 file#=4 block#=324094 blocks=3 obj#=11767 tim=1024496401

WAIT #13: nam='db file sequential read' ela= 317 file#=4 block#=324097 blocks=1 obj#=11767 tim=1024497277

WAIT #13: nam='db file scattered read' ela= 595 file#=4 block#=324098 blocks=3 obj#=11767 tim=1024498102

WAIT #13: nam='db file sequential read' ela= 282 file#=4 block#=324102 blocks=1 obj#=11767 tim=1024498991

WAIT #13: nam='db file scattered read' ela= 6797 file#=4 block#=324103 blocks=2 obj#=11767 tim=1024506013

WAIT #13: nam='db file sequential read' ela= 460 file#=4 block#=324105 blocks=1 obj#=11767 tim=1024506877

WAIT #13: nam='db file scattered read' ela= 1285 file#=4 block#=324106 blocks=3 obj#=11767 tim=1024508384

WAIT #13: nam='db file sequential read' ela= 267 file#=4 block#=324109 blocks=1 obj#=11767 tim=1024509266

WAIT #13: nam='db file scattered read' ela= 482 file#=4 block#=324110 blocks=3 obj#=11767 tim=1024509988

WAIT #13: nam='db file sequential read' ela= 328 file#=4 block#=324113 blocks=1 obj#=11767 tim=1024510861

WAIT #13: nam='db file scattered read' ela= 575 file#=4 block#=324114 blocks=3 obj#=11767 tim=1024511647

WAIT #13: nam='db file sequential read' ela= 321 file#=4 block#=324117 blocks=1 obj#=11767 tim=1024512531

WAIT #13: nam='db file scattered read' ela= 457 file#=4 block#=324118 blocks=3 obj#=11767 tim=1024513199

WAIT #13: nam='db file sequential read' ela= 279 file#=4 block#=324121 blocks=1 obj#=11767 tim=1024514043

WAIT #13: nam='db file scattered read' ela= 540 file#=4 block#=324122 blocks=3 obj#=11767 tim=1024514796

WAIT #13: nam='db file sequential read' ela= 272 file#=4 block#=324125 blocks=1 obj#=11767 tim=1024515641

WAIT #13: nam='db file scattered read' ela= 496 file#=4 block#=324126 blocks=3 obj#=11767 tim=1024516362

WAIT #13: nam='db file sequential read' ela= 343 file#=4 block#=324129 blocks=1 obj#=11767 tim=1024517273

WAIT #13: nam='db file scattered read' ela= 593 file#=4 block#=324130 blocks=3 obj#=11767 tim=1024518116

WAIT #13: nam='db file sequential read' ela= 2842 file#=4 block#=324133 blocks=1 obj#=11767 tim=1024521533

WAIT #13: nam='db file scattered read' ela= 436 file#=4 block#=324134 blocks=3 obj#=11767 tim=1024522199

WAIT #13: nam='db file sequential read' ela= 282 file#=4 block#=324137 blocks=1 obj#=11767 tim=1024523048

WAIT #13: nam='db file scattered read' ela= 557 file#=4 block#=324138 blocks=3 obj#=11767 tim=1024523824

WAIT #13: nam='db file sequential read' ela= 304 file#=4 block#=324141 blocks=1 obj#=11767 tim=1024524709

WAIT #13: nam='db file scattered read' ela= 426 file#=4 block#=324142 blocks=3 obj#=11767 tim=1024525363

WAIT #13: nam='db file sequential read' ela= 261 file#=4 block#=324145 blocks=1 obj#=11767 tim=1024526204

WAIT #13: nam='db file scattered read' ela= 550 file#=4 block#=324146 blocks=3 obj#=11767 tim=1024526978

WAIT #13: nam='db file sequential read' ela= 254 file#=4 block#=324149 blocks=1 obj#=11767 tim=1024527798

WAIT #13: nam='db file scattered read' ela= 467 file#=4 block#=324150 blocks=3 obj#=11767 tim=1024528459

WAIT #13: nam='db file sequential read' ela= 292 file#=4 block#=324153 blocks=1 obj#=11767 tim=1024529235

WAIT #13: nam='db file scattered read' ela= 560 file#=4 block#=324154 blocks=3 obj#=11767 tim=1024529980

WAIT #13: nam='db file sequential read' ela= 6640 file#=4 block#=324157 blocks=1 obj#=11767 tim=1024537121

WAIT #13: nam='db file scattered read' ela= 458 file#=4 block#=324158 blocks=3 obj#=11767 tim=1024537803

WAIT #13: nam='db file sequential read' ela= 260 file#=4 block#=324161 blocks=1 obj#=11767 tim=1024538537

WAIT #13: nam='db file scattered read' ela= 525 file#=4 block#=324162 blocks=3 obj#=11767 tim=1024539250

WAIT #13: nam='db file sequential read' ela= 271 file#=4 block#=324166 blocks=1 obj#=11767 tim=1024540012

WAIT #13: nam='db file scattered read' ela= 399 file#=4 block#=324167 blocks=2 obj#=11767 tim=1024540601

WAIT #13: nam='db file sequential read' ela= 294 file#=4 block#=324169 blocks=1 obj#=11767 tim=1024541212

WAIT #13: nam='db file scattered read' ela= 538 file#=4 block#=324170 blocks=3 obj#=11767 tim=1024541935

WAIT #13: nam='db file sequential read' ela= 258 file#=4 block#=324173 blocks=1 obj#=11767 tim=1024542666

WAIT #13: nam='db file scattered read' ela= 542 file#=4 block#=324174 blocks=3 obj#=11767 tim=1024543389

WAIT #13: nam='db file sequential read' ela= 250 file#=4 block#=324177 blocks=1 obj#=11767 tim=1024544113

WAIT #13: nam='db file scattered read' ela= 514 file#=4 block#=324178 blocks=3 obj#=11767 tim=1024544817

WAIT #13: nam='db file sequential read' ela= 260 file#=4 block#=324181 blocks=1 obj#=11767 tim=1024545549

WAIT #13: nam='db file scattered read' ela= 434 file#=4 block#=324182 blocks=3 obj#=11767 tim=1024546184

WAIT #13: nam='db file sequential read' ela= 269 file#=4 block#=324185 blocks=1 obj#=11767 tim=1024546954

WAIT #13: nam='db file scattered read' ela= 540 file#=4 block#=324186 blocks=3 obj#=11767 tim=1024547695

WAIT #13: nam='db file sequential read' ela= 280 file#=4 block#=324189 blocks=1 obj#=11767 tim=1024548473

WAIT #13: nam='db file scattered read' ela= 472 file#=4 block#=324190 blocks=3 obj#=11767 tim=1024549147

WAIT #13: nam='db file sequential read' ela= 299 file#=4 block#=324193 blocks=1 obj#=11767 tim=1024549955

WAIT #13: nam='db file scattered read' ela= 555 file#=4 block#=324194 blocks=3 obj#=11767 tim=1024550705

WAIT #13: nam='db file sequential read' ela= 307 file#=4 block#=324197 blocks=1 obj#=11767 tim=1024551501

WAIT #13: nam='db file scattered read' ela= 447 file#=4 block#=324198 blocks=3 obj#=11767 tim=1024552138

WAIT #13: nam='db file sequential read' ela= 277 file#=4 block#=324201 blocks=1 obj#=11767 tim=1024552870

WAIT #13: nam='db file scattered read' ela= 526 file#=4 block#=324202 blocks=3 obj#=11767 tim=1024553575

WAIT #13: nam='db file sequential read' ela= 248 file#=4 block#=324205 blocks=1 obj#=11767 tim=1024554269

WAIT #13: nam='db file scattered read' ela= 462 file#=4 block#=324206 blocks=3 obj#=11767 tim=1024554916

WAIT #13: nam='db file sequential read' ela= 340 file#=4 block#=324209 blocks=1 obj#=11767 tim=1024555720

WAIT #13: nam='db file scattered read' ela= 568 file#=4 block#=324210 blocks=3 obj#=11767 tim=1024556467

WAIT #13: nam='db file sequential read' ela= 336 file#=4 block#=324213 blocks=1 obj#=11767 tim=1024557268

WAIT #13: nam='db file scattered read' ela= 457 file#=4 block#=324214 blocks=3 obj#=11767 tim=1024557907

WAIT #13: nam='db file sequential read' ela= 284 file#=4 block#=324217 blocks=1 obj#=11767 tim=1024558792

WAIT #13: nam='db file scattered read' ela= 537 file#=4 block#=324218 blocks=3 obj#=11767 tim=1024559572

WAIT #13: nam='db file sequential read' ela= 296 file#=4 block#=324221 blocks=1 obj#=11767 tim=1024560451

WAIT #13: nam='db file scattered read' ela= 484 file#=4 block#=324222 blocks=3 obj#=11767 tim=1024561181

WAIT #13: nam='db file sequential read' ela= 321 file#=4 block#=324225 blocks=1 obj#=11767 tim=1024562089

WAIT #13: nam='db file scattered read' ela= 570 file#=4 block#=324226 blocks=3 obj#=11767 tim=1024562877

WAIT #13: nam='db file sequential read' ela= 307 file#=4 block#=324230 blocks=1 obj#=11767 tim=1024563727

WAIT #13: nam='db file scattered read' ela= 448 file#=4 block#=324231 blocks=2 obj#=11767 tim=1024564386

WAIT #13: nam='db file sequential read' ela= 312 file#=4 block#=324233 blocks=1 obj#=11767 tim=1024565083

WAIT #13: nam='db file scattered read' ela= 547 file#=4 block#=324234 blocks=3 obj#=11767 tim=1024565833

WAIT #13: nam='db file sequential read' ela= 313 file#=4 block#=324237 blocks=1 obj#=11767 tim=1024566672

WAIT #13: nam='db file scattered read' ela= 487 file#=4 block#=324238 blocks=3 obj#=11767 tim=1024567362

WAIT #13: nam='db file sequential read' ela= 321 file#=4 block#=324241 blocks=1 obj#=11767 tim=1024568213

WAIT #13: nam='db file scattered read' ela= 592 file#=4 block#=324242 blocks=3 obj#=11767 tim=1024569021

WAIT #13: nam='db file sequential read' ela= 328 file#=4 block#=324245 blocks=1 obj#=11767 tim=1024569911

WAIT #13: nam='db file scattered read' ela= 7974 file#=4 block#=324246 blocks=3 obj#=11767 tim=1024578096

WAIT #13: nam='db file sequential read' ela= 361 file#=4 block#=324249 blocks=1 obj#=11767 tim=1024579019

WAIT #13: nam='db file scattered read' ela= 1221 file#=4 block#=324250 blocks=3 obj#=11767 tim=1024580454

WAIT #13: nam='db file sequential read' ela= 266 file#=4 block#=324253 blocks=1 obj#=11767 tim=1024581295

WAIT #13: nam='db file scattered read' ela= 5233 file#=4 block#=324254 blocks=3 obj#=11767 tim=1024586753

WAIT #13: nam='db file sequential read' ela= 273 file#=4 block#=324257 blocks=1 obj#=11767 tim=1024587716

WAIT #13: nam='db file scattered read' ela= 540 file#=4 block#=324258 blocks=3 obj#=11767 tim=1024588544

WAIT #13: nam='db file sequential read' ela= 279 file#=4 block#=324261 blocks=1 obj#=11767 tim=1024589574

WAIT #13: nam='db file scattered read' ela= 459 file#=4 block#=324262 blocks=3 obj#=11767 tim=1024590313

WAIT #13: nam='db file sequential read' ela= 319 file#=4 block#=324265 blocks=1 obj#=11767 tim=1024591343

WAIT #13: nam='db file scattered read' ela= 535 file#=4 block#=324266 blocks=3 obj#=11767 tim=1024592130

WAIT #13: nam='db file sequential read' ela= 305 file#=4 block#=324269 blocks=1 obj#=11767 tim=1024593083

WAIT #13: nam='db file scattered read' ela= 449 file#=4 block#=324270 blocks=3 obj#=11767 tim=1024593774

WAIT #13: nam='db file sequential read' ela= 269 file#=4 block#=324273 blocks=1 obj#=11767 tim=1024594688

WAIT #13: nam='db file scattered read' ela= 517 file#=4 block#=324274 blocks=3 obj#=11767 tim=1024595453

WAIT #13: nam='db file sequential read' ela= 269 file#=4 block#=324277 blocks=1 obj#=11767 tim=1024596369

WAIT #13: nam='db file scattered read' ela= 455 file#=4 block#=324278 blocks=3 obj#=11767 tim=1024597065

WAIT #13: nam='db file sequential read' ela= 305 file#=4 block#=324281 blocks=1 obj#=11767 tim=1024597983

WAIT #13: nam='db file scattered read' ela= 547 file#=4 block#=324282 blocks=3 obj#=11767 tim=1024598772

WAIT #13: nam='db file sequential read' ela= 311 file#=4 block#=324285 blocks=1 obj#=11767 tim=1024599695

FETCH #13:c=46875,e=113065,p=210,cr=213,cu=0,mis=0,r=15,dep=0,og=1,tim=1024599878

Looking further into the trace file, at roughly 12.564243

seconds after the multi-block followed by single block read cycle started, the 8KB database switched to single block reads. At

roughly 14.484744 seconds after the multi-block followed by single block read cycle started, the 16KB database switched to

single block reads.

The average of 10 single block reads in the 8KB database is 0.0002403 seconds, with an occasional odd read of roughly 0.0004

or 0.0176 seconds. The average of 10 single block reads in the 16KB database is 0.000326 seconds, with an occasional odd read

of roughly 0.0111 or 0.0347 seconds.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Added point at which trace file switches to single block reads.

Message was edited by:

Charles Hooper

Re: Larger vs. Small data block

Posted: Jun 8, 2008 3:37 PM in response to: Jonathan Lewis
Reply

Re: Larger vs. Small data block

Posted: Jun 8, 2008 4:52 PM in response to: Jonathan Lewis
Reply

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 8, 2008 5:03 PM in response to:
Reply

> >> you're supposed to design a theory to match the

> facts, not select the facts to match the theory.

>

> I think it's the other way around, Jonathan, the

> scientific method requires that you start with a

> hypothesis.

>

That's just so funny I had to preserve it for posterity. I'm sure a lot of readers on this forum have noticed how selective

you are in what you quote from Metalink and other sources - now we know why you can't stop doing it.

You're supposed to start with observations (facts), then construct a theory, then make predictions based on the theory, then

test the theory to see if the predictions are correct.

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 8, 2008 5:04 PM in response to:
Reply

> Have you read the Oracle Corporation benchmark on different blocksizes?

>

> http://oss.oracle.com/~mason/blocksizes/

This benchmark is for a filesystem, not an Oracle database. Perhaps you could explain its relevancy.

http://btrfs.wiki.kernel.org/index.php/Main_Page

Also, why do you feel this benchmark is acceptable to cite?

- They certainly do not use ODM and do a random sample ,etc.

- It is not from a production system

- It does not seem the person posted their credentials

In fact, this filesystem is not even production ready:

"Btrfs is under heavy development, and is not suitable for any uses other than benchmarking and review."

So what exactly is it that you see in the real world, and can you offer an explanation of why you see what you do? (And please

include some technical content like metrics etc.)

Just another comment about the experiments that have been executed on this thread: No one (that I recall) has made any

sweeping statements or broad generalizations. It has merely been: in this case we observe <this> and can explain it by

<whatever> and <these> metrics support the observation. Now that may or may not be the case in other situations, but at least

one has learned how to analyzed the data and can do further experiments to explain other observations. Have we tested the

complete universe of possibilities? Of course not, nor is it feasible. But it does not make what has been learned and observed

any less relevant. My goal in participating in this forum is to educate, inform and mentor by example. Often things not

binary, hence the frequent response "it depends".

As I have mentioned before, there are times when block size can make a difference, but frequently it does not. The purpose

here is to understand when it matters and when it doesn't, if it matters why does it, and how to quantify it. I think a

similar, related topic is partitioning. There are times when partitioning can benefit, and there are times when it does not.

--

Regards,

Greg Rahn

http://structureddata.org

Re: Larger vs. Small data block

Posted: Jun 8, 2008 5:19 PM in response to: Jonathan Lewis
Reply

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 8, 2008 5:20 PM in response to: Charles Hooper
Reply

Charles,

In the most recent post you've labelled the tests 7 and 11 - but I think from a couple of posts back they were 8 and 11. (In

either case we're talking about the 'select distinct' that does an index full scan with a "sort unique nosort").

There is an oddity with the results, though. The tkprof summaries show no "db file scattered reads", but the trace outputs do

show scattered reads - is this from repeating the test ?

I made a mistake in my earlier comment, by the way. An index full scan is the ideal operation for Oracle to do index

prefetching, which usually means using the "db file parallel read" - a non-contiguous multi-block read. In this case though,

where the index is newly created, leaf blocks that are logically adjacent will also be physically adjacent in the data

extents, so the "db file parallel read" won't be used and Oracle should use the "db file scattered read" mechanism to collect

adjacent leaf blocks. This explains the appearance (though not distribution) of the scattered reads in your trace file.

The parameter _db_file_noncontig_mblock_read_count is supposed to limit the number of blocks in a single "db file parallel

read", and there are a couple of related parameters (_ncmb_readahead_enabled, _ncmb_readahead_tracing) that are supposed to

enable it and allow tracing. The default for the limit is 11 blocks - which could allow a very large index scan to operate

more efficiently in a tablespace with a larger block size - but I have no idea what might happen when a paralllel read

'collapses' to a scattered read - maybe the 11 limit still applies, rather than the db_file_multiblock_read_count limit.

The timings are quite revealing - I think it's safe to assume that a reported time for a read that falls in the region of 350

microseconds isn't a disk read, but a memory fetch from a cache somewhere. So the "slow, quick quick quick ..." pattern may be

giving us a clue about an asynchronous readahead mechanism.

If you see odd patterns of this scattered read effect switching itself on and off, that's because CKPT controls the feature,

and decides (every three seconds, I think) whether or not Oracle's "index prefetch" mechanism should be used.

There's always more to think of when the results show large deviations from expected behaviour - the possible interference of

pre-fetch and caching makes me wonder how much CPU time was consumed outside Oracle when you were doing the different tests.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Re: Larger vs. Small data block

Posted: Jun 8, 2008 5:41 PM in response to: Greg Rahn
Reply

Niall

Litchfield

Posts: 301

From: Hampshire UK

Registered: 7/4/99

Re: Larger vs. Small data block

Posted: Jun 8, 2008 5:41 PM in response to:
Reply

> >> the conventional wisdom is that changes in block

> size may occasionally help, may occasionally cause

> problems, and typically are an irrelevant waste of

> effort.

>

> No, that's not how the vast majority of working

> Oracle professional experience different blocksizes.

> Not even close.. .

Well, the vast majority of databases I've seen have used default blocksizes and so see no difference, you have a collection of

5 or 6 quotes some of which are given by people who explicitly disagree with you and Jonathan has a conventional wisdom which

corresponds pretty much to the consensus of posters on internet forums. None of those are really hard evidence though are

they.

>

> Have you read the Oracle Corporation benchmark on

> different blocksizes?

>

> http://oss.oracle.com/~mason/blocksizes/

I have, I'm curious - I assume you do know that it's a test of a non-production ready filesystem for Linux don't you and has

in fact nothing whatsoever to do with the Oracle database? From the project home "Btrfs is under heavy development, and is not

suitable for any uses other than benchmarking and review. The Btrfs disk format is not yet finalized".

> >> developing tests and sharing observations.

>

> That's fun and interesting, but it's not science, and

> it definitively not the scientific method

Though curiously it does rather seem to be a method frequently used by scientists... Wikipedia has it about right

1) use your experience and knowledge

2) form a conjecture

3) come up with some predictions

4) perform tests of the predictions.

That's pretty much what is going on here.

> I'll keep saying it:

>

>

> - A single negative test case DOES NOT prove that a

> general concept is wrong. It's a shame that you have

> conned people into believing this nonsense.

We're in good company here though - look up Michelson-Morley..

> - Contrived tests DO NOT represent the real world.

> If you want valid observations, use one of your

> client systems.

So does the double-slit experiment not represent the real world? After all light doesn't often pass though double slits to

form interference patterns in the real world.

> - Artificial tests can easily be manipulated by

> adjusting any one of hundreds of interveining

> factors. Hence, they are COMPLETELY INVALID as the

> basis for any general conclusions.

Hence they are completely valid as evidence to be disclosed reported and discussed. Client systems tend not to be like that,

though I'm sure your clients who evidently agree for you to publish results based on their systems on the internet are an

enlightened bunch.

> You guys are just chasing your tails. By your own

> admission, you have degress in the Arts, not Science,

> and your idea of valid testing is very different from

> what I see in the real world

Must have missed that admission, can you remind us what your scientific qualifications are since they seem important to you.

> These individual tests don't matter, what matters is

> the conclusions that are drawn from them!

A truly enlightening quote

Niall Litchfield

http://www.orawin.info/

Message was edited to avoid bad bolding by:

Niall Litchfield

Re: Larger vs. Small data block

Posted: Jun 8, 2008 5:51 PM in response to: Niall Litchfield
Reply

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 8, 2008 6:01 PM in response to:
Reply

[nobr]> >> Wikipedia has it about right

>

> Good caveat! It changes from minute to minute . . .

>

> It's mostly anonymous junk, IMHO:

>

And yet only a few weeks ago you seemed to think it was good enough to quote for your own purposes.

http://forums.oracle.com/forums/thread.jspa?messageID=2521515?

You always want to have it both ways, don't you.

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk[/nobr]

Niall

Litchfield

Posts: 301

From: Hampshire UK

Registered: 7/4/99

Re: Larger vs. Small data block

Posted: Jun 8, 2008 6:11 PM in response to:
Reply

> Hi Greg,

>

> >> Also, why do you feel this benchmark is acceptable

> to cite?

>

> Because the external I/O subsystem is a HUGE factor

> in the choice of blocksize:

>

> http://www.dba-oracle.com/t_physical_io_disk_metrics.h

> tm

>

> Stripe size, the speed of the I/O channels, and most

> of all, the PHYSICAL blocking all impact the choice

> of the "best" blocksize.

And that explains why a benchmark of file transfers on a filesystem that you can't run Oracle on is relevant how?

>

> >> No one (that I recall) has made any sweeping

> statements or broad generalizations.

>

> Huh?

>

> What do you call this?

>

> “the conventional wisdom is that changes in block

> size may occasionally help, may occasionally cause

> problems, and typically are an irrelevant waste of

> effort.”

>

> That’s just not true. You can say it as often as you

> want, but the choice of blocksize can have a PROFOUND

> impact on performance.

what do you mean by "can"? Do you mean "will", "will usually" or "will sometimes"? Jonathan's statement does not, at least in

British English, preclude your statement from being true sometimes.

> Let’s be clear, the only problem that I have with

> this exercise (besides the validity issue), is the

> pretense that it is “scientific”.

>

> It’s not scientifically valid. Drop this "Oracle

> Scientist" stuff, and admit it.

How about logical and rational, as contrasted with illogical and irrational, will that do?

> >> My goal in participating in this forum is to

> educate

>

> If you really mean that, the real way to educate us

> is to tell us about all of the things that you see in

> the field.. . Tell war stories, tales from the

> trenches, that's how people learn.

People learn in a variety of ways and from a variety of different things. Stories from experienced individuals are one way,

repeatable demonstrations are another, making your own mistakes is a third, study of literature is a fourth and so on. Greg

and Charles are contributing educational material as surely as I telling tales of "databases I have crashed" has done in the

past.

> >> Often things not binary, hence the frequent

> response "it depends".

>

> I agree!

I do, though the true test is the ability to state, rationally and in a method that stands up to scrutiny, upon what it

depends.

> All we have in the world of Oracle performance is the

> human intuition that comes from years of hand-on

> experience with real-world databases.

Have you considered the quality of Bordeaux wines? A rather long time ago it was discovered that perhaps actually there were

definable factors at work in what made a great bordeaux and that in fact, just maybe, understanding what affected the wine and

how was a better bet than trusting the judgement of the human intuition of the self-appointed experts. (see

http://query.nytimes.com/gst/fullpage.html?res=9C0CE7DD1731F937A35750C0A966958260) for example. Perhaps, just maybe, the

performance of engineered systems such as Oracle might also be amenable to similar analysis.

Niall Litchfield

http://www.orawin.info/

By the way check out the quality rating of the 89 and 90 Vintages that were being predicted at the time of the NYT article.

http://www.wineontheweb.com/vintage/112_years/112_years.html

>

> There are NO ABSOLUTES, NO PROOFS, like you say "it

> depends".

Re: Larger vs. Small data block

Posted: Jun 8, 2008 6:23 PM in response to: Niall Litchfield
Reply

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 8, 2008 7:49 PM in response to: Jonathan Lewis
Reply

Based on what I am seeing, there is not any statistical difference between using 8k or 16k blocks in either a FTS or a Hash

Join.

The following were performed on 10.2.0.3, 32-bit Linux.

Full Table Scan

8k db & table

**

select * from WEB_RETURNS_8K

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 71978 37.55 67.72 102778 173743 0 7197670

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 71980 37.55 67.72 102778 173743 0 7197670

Misses in library cache during parse: 0

Optimizer mode: ALL_ROWS

Parsing user id: 25

Rows Row Source Operation

------- ---

7197670 TABLE ACCESS FULL WEB_RETURNS_8K (cr=173743 pr=102778 pw=0 time=28832076 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 71980 0.00 0.09

 SQL*Net message from client 71980 0.00 67.19

 db file sequential read 1 0.00 0.00

 db file scattered read 807 0.06 7.01

 SQL*Net more data to client 359883 0.00 26.08

**

16k db & table

**

select * from WEB_RETURNS_16K

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 71978 36.34 66.90 50726 122225 0 7197670

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 71980 36.34 66.90 50726 122225 0 7197670

Misses in library cache during parse: 0

Optimizer mode: ALL_ROWS

Parsing user id: 25

Rows Row Source Operation

------- ---

7197670 TABLE ACCESS FULL WEB_RETURNS_16K (cr=122225 pr=50726 pw=0 time=21634648 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 71980 0.00 0.09

 SQL*Net message from client 71980 0.00 67.37

 db file sequential read 1 0.00 0.00

 db file scattered read 797 0.03 6.88

 SQL*Net more data to client 359883 0.00 26.46

**

Hash Join

8k db & table

**

select count(*)

from WEB_RETURNS_8K a, WEB_RETURNS_8KB b

where a.WR_ORDER_NUMBER = b.WR_ORDER_NUMBER

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 29.77 41.93 224869 205580 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 29.77 41.93 224869 205580 0 1

Misses in library cache during parse: 0

Optimizer mode: ALL_ROWS

Parsing user id: 25

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=205580 pr=224869 pw=19313 time=41938967 us)

15516562 HASH JOIN (cr=205580 pr=224869 pw=19313 time=48568651 us)

7197670 TABLE ACCESS FULL WEB_RETURNS_8K (cr=102790 pr=102778 pw=0 time=21639417 us)

7197670 TABLE ACCESS FULL WEB_RETURNS_8KB (cr=102790 pr=102778 pw=0 time=21606062 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 db file sequential read 2 0.00 0.00

 db file scattered read 1614 0.03 12.77

 direct path write temp 623 0.00 0.50

 direct path read temp 623 0.02 0.22

 SQL*Net message from client 2 128.39 128.39

**

16k db & table

**

select count(*)

from WEB_RETURNS_16K a, WEB_RETURNS_16KB b

where a.WR_ORDER_NUMBER = b.WR_ORDER_NUMBER

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 28.52 41.35 110602 101474 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 28.52 41.35 110602 101474 0 1

Misses in library cache during parse: 0

Optimizer mode: ALL_ROWS

Parsing user id: 25

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=101474 pr=110602 pw=9150 time=41353262 us)

15516562 HASH JOIN (cr=101474 pr=110602 pw=9150 time=48030575 us)

7197670 TABLE ACCESS FULL WEB_RETURNS_16K (cr=50737 pr=50726 pw=0 time=14443360 us)

7197670 TABLE ACCESS FULL WEB_RETURNS_16KB (cr=50737 pr=50726 pw=0 time=21624217 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 db file sequential read 2 0.00 0.00

 db file scattered read 1594 0.05 13.51

 direct path write temp 610 0.00 0.49

 direct path read temp 610 0.00 0.16

 SQL*Net message from client 2 6.94 6.94

**

I think Charles Hooper mentioned he was seeing the few reads are smaller than the MBRC and Jonathan Lewis mentioned that in an

ASSM tablespace the extent starts with 64k and then it increases. That is correct, MBRC wont cross extents. In my test case I

used an initial extent size of 100m and you can see that the MBRC immediately kicks in reading 128 8k blocks (1MB) at a time.

The 1 block read is the segment header.

PARSING IN CURSOR #2 len=46 dep=0 uid=25 oct=3 lid=25 tim=1184537616560639 hv=1224141136 ad='79f6dd60'

select * from WEB_RETURNS_8k

END OF STMT

PARSE #2:c=0,e=58,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,tim=1184537616560634

EXEC #2:c=0,e=70,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,tim=1184537616561573

WAIT #2: nam='db file sequential read' ela= 2589 file#=4 block#=26 blocks=1 obj#=9793 tim=1184537616564289

WAIT #2: nam='db file scattered read' ela= 23961 file#=4 block#=27 blocks=128 obj#=9793 tim=1184537616590692

WAIT #2: nam='db file scattered read' ela= 9452 file#=4 block#=155 blocks=128 obj#=9793 tim=1184537616870244

WAIT #2: nam='db file scattered read' ela= 7807 file#=4 block#=283 blocks=128 obj#=9793 tim=1184537617053121

WAIT #2: nam='db file scattered read' ela= 7819 file#=4 block#=411 blocks=128 obj#=9793 tim=1184537617214832

WAIT #2: nam='db file scattered read' ela= 7809 file#=4 block#=539 blocks=128 obj#=9793 tim=1184537617377531

WAIT #2: nam='db file scattered read' ela= 7869 file#=4 block#=667 blocks=128 obj#=9793 tim=1184537617539113

WAIT #2: nam='db file scattered read' ela= 7847 file#=4 block#=795 blocks=128 obj#=9793 tim=1184537617700272

--

Regards,

Greg Rahn

http://structureddata.org

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 8, 2008 8:09 PM in response to:
Reply

> >> you're supposed to design a theory to match the

> facts, not select the facts to match the theory.

>

> I think it's the other way around, Jonathan, the

> scientific method requires that you start with a

> hypothesis.

>

Thank-you. At last, it all finally makes sense, you select facts to match your theories. Got it.

It finally explains why after I and many others show you facts that actually contradict one of your theories, they simply get

ignored. You only ever seem to take note of those facts which match your theories.

Seriously, thank-you, all is now crystal clear.

Cheers

Richard Foote

http://richardfoote.wordpress.com/

Hans

Forbrich

Posts: 7,483

From: AB, Canada

Registered: 3/13/99

Re: Larger vs. Small data block

Posted: Jun 8, 2008 8:28 PM in response to: Richard Foote
Reply

I imaging this thread is very similar to a conversation centuries ago between Galileo and the authorities.

Time to bookmark the thread for future reference - both for the reasonably careful data set produced by Charles (and

discussion thereof), and your observation.

Message was edited by: Hans Forbrich

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 8, 2008 9:26 PM in response to: Hans Forbrich
Reply

For anyone interested in the academic description of the scientific method:

http://teacher.pas.rochester.edu/phy_labs/AppendixE/AppendixE.html

David

Aldridge

Posts: 1,022

From: XM Satellite Radio,

Washington DC

Registered: 10/5/98

Re: Larger vs. Small data block

Posted: Jun 8, 2008 9:37 PM in response to:
Reply

> - David Aldridge notes a test where is noted a

> 6% reduction with larger index blocksizes, a

> significant difference, especially to larger shops :

>

> "there are multiple stages in deciding whether the

> larger block size is beneficial to a system ...

>

> Working out what low level operations benefit from it

> (multi-block reads, single block reads)

>

> Identifying what higher-level access methods make use

> of these operations

>

> Applying this to the type of object (table/index) and

> system type (reporting/OLTP)"

>

> ---------------------------------------

For the record, that quote came from a forum topic in which I profoundly disagreed with your multiple blocksize theory, and I

still do.

http://dba.ipbhost.com/index.php?showtopic=1239&st=15

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 8, 2008 10:34 PM in response to: damorgan
Reply

> For anyone interested in the academic description of

> the scientific method:

>

> http://teacher.pas.rochester.edu/phy_labs/AppendixE/Ap

> pendixE.html

Mr. Damorgan,

I don't think you are qualified to make any comments on this tread. Let me quote your initial challenge again,

>>That the query is faster is not being questions. What is at issue is that you are

>>drawing an unsupported inference.

>>The point I think Jonathan is making is that your test case does not prove what you

>>are claiming it does. 16x32 <> 8x8. You have no evidence that the relevant factor was

>>the block size and not the change in multi-block reads or any one of a number of >>other possible factors.

>>The lab test should look like this:

>>Test 1: Run test using 8K blocks.

>>Test 2: Run the exact same test changing NOTHING other than the block size.

Being an Ace Director and hide your face in a hole and utter nonsense is not the quality of a

professional, at least as i expected from you. As like many other members in this thread indicated,

why don't you publish Lab results, if you have any, instead of trailing troll with your pals.

I was also in teaching industry, for more than 10 years before my current jobs in corporate

worlds. I am sorry to say harsh words, but i think you deserve that.

sp009

David

Aldridge

Posts: 1,022

From: XM Satellite Radio,

Washington DC

Registered: 10/5/98

Re: Larger vs. Small data block

Posted: Jun 8, 2008 11:14 PM in response to: sp009
Reply

DAM's point seems to me to be a fair one. The size of the multiblock read is independent of the block size and the effects of

changing them ought to be tested independently of each other. It's inescapable that a procedural error was made in using

different multiblock read sizes in the two test cases, and that any results would be questionable.

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 9, 2008 12:53 AM in response to: Greg Rahn
Reply

In the previous experiments I did, all of the I/O was physical: no blocks existed in the buffer cache prior to execution. I

thought it would useful to consider the case if all of the data is in the buffer cache (no physical reads), so I ran another

set of experiments. In each scenario (FTS and Hash Join) the elapsed times are statistically equivalent (close enough to call

equal).

Oracle 10.2.0.3

Linux 32-bit

ASM Storage

8k db and table: FTS From Buffer Cache

**

select * from WEB_RETURNS_8K

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 71978 33.47 56.00 0 173743 0 7197670

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 71980 33.47 56.00 0 173743 0 7197670

Misses in library cache during parse: 0

Optimizer mode: ALL_ROWS

Parsing user id: 25

Rows Row Source Operation

------- ---

7197670 TABLE ACCESS FULL WEB_RETURNS_8K (cr=173743 pr=0 pw=0 time=14399933 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 71981 0.00 0.09

 SQL*Net message from client 71981 0.00 66.89

 SQL*Net more data to client 359883 0.00 25.26

**

16k db and table: FTS From Buffer Cache

**

select * from WEB_RETURNS_16K

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 71978 33.84 56.95 0 122225 0 7197670

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 71980 33.84 56.95 0 122225 0 7197670

Misses in library cache during parse: 0

Optimizer mode: ALL_ROWS

Parsing user id: 25

Rows Row Source Operation

------- ---

7197670 TABLE ACCESS FULL WEB_RETURNS_16K (cr=122225 pr=0 pw=0 time=14400007 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 71981 0.00 0.09

 SQL*Net message from client 71981 0.00 67.36

 SQL*Net more data to client 359883 0.00 26.09

**

8k db and table: Hash Join From Buffer Cache

**

select count(*)

from WEB_RETURNS_8K a, WEB_RETURNS_8KB b

where a.WR_ORDER_NUMBER = b.WR_ORDER_NUMBER

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 23.84 23.96 10447 205580 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 23.84 23.96 10447 205580 0 1

Misses in library cache during parse: 0

Optimizer mode: ALL_ROWS

Parsing user id: 25

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=205580 pr=10447 pw=10447 time=23961252 us)

15516562 HASH JOIN (cr=205580 pr=10447 pw=10447 time=41738443 us)

7197670 TABLE ACCESS FULL WEB_RETURNS_8K (cr=102790 pr=0 pw=0 time=7197880 us)

7197670 TABLE ACCESS FULL WEB_RETURNS_8KB (cr=102790 pr=0 pw=0 time=7197860 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 5 0.00 0.00

 SQL*Net message from client 5 0.00 0.00

 direct path write temp 337 0.03 0.47

 direct path read temp 337 0.01 0.07

**

16k db and table: Hash Join From Buffer Cache

**

select count(*)

from WEB_RETURNS_16K a, WEB_RETURNS_16KB b

where a.WR_ORDER_NUMBER = b.WR_ORDER_NUMBER

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 23.42 23.69 5055 101474 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 23.42 23.69 5055 101474 0 1

Misses in library cache during parse: 0

Optimizer mode: ALL_ROWS

Parsing user id: 25

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=101474 pr=5055 pw=5055 time=23699400 us)

15516562 HASH JOIN (cr=101474 pr=5055 pw=5055 time=41726195 us)

7197670 TABLE ACCESS FULL WEB_RETURNS_16K (cr=50737 pr=0 pw=0 time=7197866 us)

7197670 TABLE ACCESS FULL WEB_RETURNS_16KB (cr=50737 pr=0 pw=0 time=7197843 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 5 0.00 0.00

 SQL*Net message from client 5 0.00 0.00

 direct path write temp 337 0.00 0.43

 direct path read temp 337 0.02 0.33

**

--

Regards,

Greg Rahn

http://structureddata.org

Niall

Litchfield

Posts: 301

From: Hampshire UK

Registered: 7/4/99

Re: Larger vs. Small data block

Posted: Jun 9, 2008 1:52 AM in response to: David Aldridge
Reply

> DAM's point seems to me to be a fair one. The size of

> the multiblock read is independent of the block size

> and the effects of changing them ought to be tested

> independently of each other. It's inescapable that a

> procedural error was made in using different

> multiblock read sizes in the two test cases, and that

> any results would be questionable.

Hi David,

I think I disagree - though only in the sense that we are now discussing a publicly available and repeatable test and refining

our theories :).

Specifically I disagree that setting MBRC is 'independent' of the setting of the block size of the database. They certainly

are independent variables you can set them both separately, but I'd argue that they were related variables (both together go

towards determining how much data is attempted to be read in a single read). Historically of course setting MBRC also had a

big impact on the costing of access paths, so you end up with more and messier factors to consider. It's also why Charles (I

think it was) found that MBRC was changed by default on different blocksize databases in more recent versions.

If I were to do tests as per Charles and Greg (excellent work by both by the way - butr I would say that wouldn't I) I think

the tests on the different blocksizes should be accompanied by another 2 axis of variability - setting MBRC so as to make the

data transfer attempted in a single read the same (and matching the hardware) or not and having system statistics set or not.

(then we'd get drowned in results in a forum thread - maybe yet another whitepaper should be written)

Niall Litchfield

http://www.orawin.info/

Niall

Litchfield

Posts: 301

From: Hampshire UK

Registered: 7/4/99

Re: Larger vs. Small data block

Posted: Jun 9, 2008 1:59 AM in response to: damorgan
Reply

> For anyone interested in the academic description of

> the scientific method:

>

> http://teacher.pas.rochester.edu/phy_labs/AppendixE/Ap

> pendixE.html

As well as the description of the process I also like the quote at the top describing the reason for the process

The scientific method is the process by which scientists, collectively and over time, endeavor to construct an accurate (that

is, reliable, consistent and non-arbitrary) representation of the world.

It reminded me of Feynman in Cargo Cult Science

But this long history of learning how not to fool ourselves—of having utter scientific integrity—is, I’m sorry to say,

something that we haven’t specifically included in any particular course that I know of. We just hope you’ve caught on by

osmosis.

The first principle is that you must not fool yourself—and you are the easiest person to fool. So you have to be very careful

about that. After you’ve not fooled yourself, it’s easy not to fool other scientists. You just have to be honest in a

conventional way after that.

I hope it's obvious to my readers which side of the argument (tests, discussion and refinement vs appeal to industry

recognised experts with various business interests) I think is better characterised by the Feynman integrity described above.

Niall

cd

Posts: 4,585

From: Vienna, Austria

Registered: 9/8/98

Re: Larger vs. Small data block

Posted: Jun 9, 2008 6:00 AM in response to: Niall Litchfield
Reply

Thing is, DKB introduced "science" by accusing others of using "unscientific tricks" in this thread. Now people like me would

now assume that he'd show us some scientific approaches to counter that development, but all I'll see is some useless

references to threads, hidden production databases and a CVs that doesn't even show the slightest reference to a scientific

career.

For me, threads like this, with test cases that could be used to test drive my own configuration, if I ever have to, are

invaluable, and I can live with the noise generated by one self-proclaimed leading Oracle Expert/DBA.

Thanks to all the others that took their time to show and explain those results, you guys rock.

C.

Niall

Litchfield

Posts: 301

From: Hampshire UK

Registered: 7/4/99

Re: Larger vs. Small data block

Posted: Jun 9, 2008 6:03 AM in response to:
Reply

> Hi Niall,

>

> >> A rather long time ago it was discovered that

> perhaps actually there were definable factors at work

> in what made a great bordeaux and that in fact, just

> maybe, understanding what affected the wine and how

> was a better bet than trusting the judgement of the

> human intuition of the self-appointed experts

>

> EXCELLENT example! This sure sounds familiar:

>

> "Robert M. Parker Jr., generally regarded as the

> most influential wine critic in America, calls

> Professor Ashenfelter's research ''ludicrous and

> absurd.''

It does indeed sound familiar doesn't it - the argument from authority and reputation vs the argument from analysis. Possibly

it's somewhat unfortunate for your case then that Ashenfeltzer's predictions were more reliable than Robert Parker's.

Niall Litchfield

http://www.orawin.info/

Re: Larger vs. Small data block

Posted: Jun 9, 2008 7:53 AM in response to: David Aldridge
Reply

Re: Larger vs. Small data block

Posted: Jun 9, 2008 8:02 AM in response to: Niall Litchfield
Reply

Re: Larger vs. Small data block

Posted: Jun 9, 2008 8:10 AM in response to: Niall Litchfield
Reply

Re: Larger vs. Small data block

Posted: Jun 9, 2008 8:16 AM in response to: cd
Reply

David

Aldridge

Posts: 1,022

From: XM Satellite Radio,

Washington DC

Registered: 10/5/98

Re: Larger vs. Small data block

Posted: Jun 9, 2008 8:47 AM in response to: Niall Litchfield
Reply

> I think I disagree - though only in the sense that we

> are now discussing a publicly available and

> repeatable test and refining our theories :).

I should have been more clear -- I mean the multiblock read size in terms of KB/read, rather than the init paramemter.

Particularly as in 10g the advice apears to be to not set it.

I believe that multiblock read size should always be set to the maximum available. It's regrettable that it has historically

been set in terms of a block count instead of bytes, especially in the presence of multiple block size in a single database

where you have to be careful to set the MBRC (if you set it at all) in the context of the database default block size.

Anyhoo, I don't think we're disagreeing.

cd

Posts: 4,585

From: Vienna, Austria

Registered: 9/8/98

Re: Larger vs. Small data block

Posted: Jun 9, 2008 9:04 AM in response to:
Reply

> Yes, but note that I'm the only "expert" in this

> thread who is forthright enough to publish my

> credientials!

I'd rather see you publish some test cases that could be verified - but that's too much to ask, isn't it?

> Me, I don't pretend to be an "Oracle Scientist", and

> like I said before, I think that some "self annointed

> experts" are perpetuating myths by appearing to have

> a background in science, when in reality, they are

> completely unqualified to make that claim . . .

I consider myself a software developer with some technical background. I need verifyable test cases and concepts in order to

accomplish my work. Maybe you are one of the leading Oracle DBAs on this planet, but as long as you refuse to contribute such

things and simply ask others to accept your "solutions" in good faith, I'll stick to those people you keep on attacking. So

please, talk to the hand, because this developer won't listen to you anymore.

C.

Billy

Verreynne

Posts: 6,628

Registered: 5/27/99

Re: Larger vs. Small data block

Posted: Jun 9, 2008 9:07 AM in response to:
Reply

>Out of all of the "experts" in this thread (Morgan, Lewis, Rahn, &c), how many have known credientials?

> None, but me.

> Why is that?

Because so-called "credentials" that at best are extremely time consuming and difficult to verify, mean absolutely *nothing*

here and on most forums on the Internet.

What *does* matter.. and what you blatantly do not get (or refuse to get?) is that the CONTENT of a posting is what serve as

the credentials of the posting.

In other words, references to official documentation, test case that can be read, understood and duplicated on the platform of

your choice.. stuff like that determines whether the vast majority of forum members accept that posting as credible or not.

And not on your claims of how much of an expert you are because of where you've studied, the degrees (relevant or not) you may

have, the type of suit and shoes you wear when consulting, and your claims of how many evil performance dragons you have slain

using magical silver bullets, casted in your very own superhero Oracle lair for super-experts.

David

Aldridge

Posts: 1,022

From: XM Satellite Radio,

Washington DC

Registered: 10/5/98

Re: Larger vs. Small data block

Posted: Jun 9, 2008 9:12 AM in response to:
Reply

> Hi David,

>

> >> I profoundly disagreed with your multiple

> blocksize theory

>

> It's not MY theory,I first learned it fro Oracle

> University in the early 1990's, it's been around

> quite some time. BTW, it was presented as fact by

> OU, not theory.

>

Really? I thought transportable tablespaces were an Oracle 8i feature, introduced in 1999. Or am I wrong?

> You know, OU has details in the official courseware,

> telling students how to choose the "best" blocksize

> for their database. It would be intersting to see

> what it says.

That's a different matter from using multiple block sizes in the same database.

>

> David, you yourself have noted differences in

> performance. Are you arguing that these are not big

> enough differences, or that the differences don't

> exist?

>

I've not noted very big differences, if any. I generally use large block sizes to reduce space wastage when dealing with very

long average row lengths (more of a data mart thing than a data warehouse thing), and since you never know whether someone is

going to come along with a requirement in the future that will lead to a very long average row length then I'll start off with

a high block size initially.

> Just curious, do you run your warehouses on an 8k

> blocksize?

>

16kb, usually -- I got bitten by a bug on 32kb blocks a few years ago and that makes me wary of going there again. There's

almost no difference between 16kb and 32kb sizes in space saving anyway. I have used multiple block sizes for the purpose of

transporting tablespaces from OLTP systems.

> **

> ***********************************

>

> David, please note that the differences in

> performance with different blocksizes is presented on

> MetaLink, not as theory, but as fact:

>

> Metalink Note:46757.1 titled "Notes on Choosing an

> Optimal DB BLOCK SIZE"

>

> - Large blocks gives more data transfer per I/O

> call.

>

Only if you're transfering single blocks. The overwhelming majority of data warehouse reads are multiblock direct path due to

parallel query, in my experience. Block size is not relevant to performance there, really.

> Larger blocksizes provides less fragmentation (row

> chaining and row migration) of large objects (LOB,

> BLOB, CLOB)

>

I've never worked with LOB's in a data warehouse. Can't imagine a case for them. I've worked with BLOBs on OLTP systems but

they should have been VARCHAR2s as it happens. They weren't big enough to justify a BLOB.

> - Indexes like big blocks because index height can be

> lower and more space exists within the index branch

> nodes.

>

They don't enjoy the contention on simultaneous modification though.

> Moving indexes to a larger blocksize saves disk

> space. Oracle says "you will conserve about 4% of

> data storage (4GB on every 100GB) for every large

> index in your database by moving from a 2KB database

> block size to an 8KB database block size."

>

8kb is pretty standard stuff nowadays.

> Metalink goes on to say that multiple blocksizes may

> benefit shops that have "mixed" block size

> requirements:

>

> - What can you do if you have mixed requirements of

> the above block sizes?

>

> - Oracle9i "Multiple Block Sizes" new feature comes

> into the rescue here, it allows the same database to

> have multiple block sizes at the same time .

It's 9i that allows you to have multiple block sizes then? That was 2001, not the early 1990's

>

> **

> **

>

> In the IOUG 2005 conference proceeding titled "OMBDB:

> An Innovative Paradigm for Data Warehousing

> Architectures", Anthony D. Noriega notes evidence

> that his databases benefited greatly from employing

> multiple blocksizes and notes that multiple

> blocksizes are commonly used in large databases with

> limited RAM resources, in applications such as

> marketing, advertisement, finance, pharmaceutical,

> document management, manufacturing, inventory

> control, and entertainment industry:

>

> http://noriegaaoracleexpert.blogspot.com/2007/08/advan

> ces-in-multiple-block-size-caches.html

>

> "The paper and presentation will discuss how to

> best utilize multiple block size databases in

> conjunction with table partitioning and related

> techniques, . . .

>

> Utilizing Oracle multiblock databases in data

> warehousing based systems will prove in the long-term

> to be a reliable methodology to approach the

> diversity of information and related business

> intelligence applications processes when integrating

> existing systems, consolidating older systems with

> existing or newly created ones, to avoid redundancy

> and lower costs of operations, among other factors.

>

> The input received from those already using

> multiblock databases in highly satisfactory in areas

> such as marketing, advertisement, finance,

> pharmaceutical, document management, manufacturing,

> inventory control, and entertainment industry."

I read the blog entry. No rationale is presented there at all, and there's not a single measurement presented. Just unnamed

sources. I think that if someone is going to present an idea as an "innovative paradigm" then one ought at least to have

something more to back it up with. If there is more then I'll gladly read it and provide my comments.

Re: Larger vs. Small data block

Posted: Jun 9, 2008 9:14 AM in response to: cd
Reply

Re: Larger vs. Small data block

Posted: Jun 9, 2008 9:20 AM in response to: David Aldridge
Reply

mpowel01

Posts: 2,840

Registered: 12/8/98

Re: Larger vs. Small data block

Posted: Jun 9, 2008 9:22 AM in response to:
Reply

>> I don't pretend to be an "Oracle Scientist" <<

If I remember right the scientific method was taught in my elementary school science classes. It went something like the

following:

1 - Come up with a theory (hypothesis)

2 - Device an experiment to test the hypothesis

3 - Run the test

4 - analyze the results

Additional tests may be necessary based on the test results and the findings from the analysis

Some of the requirements related to the test were

The test results had to be repeatable

You had to identify as many of the variables in the test as possible and freeze them so you could properly identify the effect

due of changes to a single variable

The tests were designed not to prove a certain point but rather to produce results that would result only if the hypothesis

were true. To design a test to produce specific results was rigging the test.

Every high school graduate should recognize the validity of this approach.

Observation on the other hand is not that reliable. It is subject to the bias of the observer and what is observed can easily

be attributed to the wrong factor.

There is also a proper way to challenge and respond to a challenge of the test design and analysis.

Mark D Powell MS (Org and Mngt), CPIM, CIRM, OCP for 8.0, 8i, 9i, & 10g

cd

Posts: 4,585

From: Vienna, Austria

Registered: 9/8/98

Re: Larger vs. Small data block

Posted: Jun 9, 2008 9:24 AM in response to:
Reply

> Really? You are not capable of testing concepts in

> your own?

That's what those mentioned test cases are for. It's called an efficient approach.

> There you go again. Myopia and zealotry, towards a

> single approach.

In your case, this is Vodoo-IT.

> Me, I listen closely when someone with unimpeachable

> credientials speaks from experience . . .

Sure, next time I need someone with a BA in Psychology ...

> You should keep an open mind, CD, you miss out on a

> lot. . . .

Don't worry, I will. It's just you who I'm going to ignore in the future.

C.

Re: Larger vs. Small data block

Posted: Jun 9, 2008 9:29 AM in response to: mpowel01
Reply

Re: Larger vs. Small data block

Posted: Jun 9, 2008 9:31 AM in response to: cd
Reply

David

Aldridge

Posts: 1,022

From: XM Satellite Radio,

Washington DC

Registered: 10/5/98

Re: Larger vs. Small data block

Posted: Jun 9, 2008 9:32 AM in response to:
Reply

> Hi David,

>

> >> That's a different matter from using multiple

> block sizes in the same database.

>

> Oh, you just got here, sorry.

>

> This is a discussion of the benefits of different

> blocksizes.

>

> We agreed to defer discussion of multiple blocksizes

> until we hit the 20th page!!!

>

Huh, I guess that neither of us got that memo then. ;)

>

> David, do you agree that, all else being equal, small

> rows in a large blocksize can perform worse than

> large rows in a small blocksize under heavy DML

> load?

>

Of course they can -- and the reverse is equally true. It depends on the nature of the DML load. You have to consider

contention, the physical ordering if any of the data, the method of modification of the data, etc.. That's why there's no

"one-size-fits-all" solution.

> **

> **********************

>

> Oh, David, you forgot to answer my question!

>

> Does your production warehouse use an 8k blocksize?

> Be Sirius now!

It uses 16kb. If it used 8kb we'd be marginally less efficient in storage space utilization. It wuldn't worry me too much if

it was though -- a few percent here and there is nothing.

cd

Posts: 4,585

From: Vienna, Austria

Registered: 9/8/98

Re: Larger vs. Small data block

Posted: Jun 9, 2008 9:39 AM in response to:
Reply

> Why is that?

Quite simple: I'm not one of the world's leading Oracle DBAs ...

C.

mpowel01

Posts: 2,840

Registered: 12/8/98

Re: Larger vs. Small data block

Posted: Jun 9, 2008 10:47 AM in response to:
Reply

First of all a repeatable results do not have to match exactly. There are such a thing as random factors. If you perform

10,000 IO's and measure every one to the nearest 10 thousand of a second the timings of the IO's are probably going to vary

some. But if you run the exact same test that performs thousands of IO's on the same system multiple times the final results

should fall within a narrow distribution. Statistics can be used to properly categorize results.

-- Mark D Powell --

Niall

Litchfield

Posts: 301

From: Hampshire UK

Registered: 7/4/99

Re: Larger vs. Small data block

Posted: Jun 9, 2008 11:19 AM in response to: mpowel01
Reply

> >> I don't pretend to be an "Oracle Scientist" <<

>

> If I remember right the scientific method was taught

> in my elementary school science classes. It went

> something like the following:

>

> 1 - Come up with a theory (hypothesis)

> 2 - Device an experiment to test the hypothesis

> 3 - Run the test

> 4 - analyze the results

Hi Mark,

The experiment had to make predictions and you missed out step 5 (I think I did as well to be fair) which is of course modify

the theory to fit the observed facts, rinse and repeat. I'm glad that the scientific method is taught in elementary school in

the U.S though, I was beginning to wonder what with all the insistence on recognised qualifications and all.

Niall

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 9, 2008 11:50 AM in response to: Jonathan Lewis
Reply

> > Thanks for having a look in to that. I didn't

> > convince my self with your answer. Never mind.

>

> Fair enough - but at least we've had a discussion

> which has highliighted the importance of

> constructuing experiments to test a hypothesis, and

> given other people the chance to see how careful you

> have to be to design the test properly/

>

> > I wish i can show the tkprof of some of the long

> run

> > queries in my production and test database

> > (identical server, windows 2003/64 with 16k and 8k

> > block size and data nearly same).

> > But the policy doesn't allow me to do that.

>

> I've never been convinced that this makes it

> impossible to share performance data without

> compromising business intelligence. After all, if

> you want to examine the I/O pattern for a query you

> can cut one statement out of a tkprof file, delete

> the SQL, and change the names of the tables and

> indexes in the rowsource output in a consistent

> fashion.

>

> You might be able so show an example of that sort of

> thing to your governance officer and get clearance to

> show it on the forum.

>

> Regards

> Jonathan Lewis

> http://jonathanlewis.wordpress.com

> http://www.jlcomp.demon.co.uk

Just finished the analysis of tkprof of a job scheduled on week-end, which process 30m rows,

in production (16k db_block_size) and test (8k db_block_size) databases installed in identical

Server Win 2003/64b ASM RAID. Before the job run, i refreshed the data in test so that both

database will have same volume. Guess what, there is 18% difference in response time and

the cpu utilization between the production and test database. My supervisor discussed the

End-result with our consultant DBA (From a world famous Consultancy Group (Oracle???),

and is labeled as performance Guru!). End result? i am expecting a pay raise pretty soon and

our consultant DBA owes me a lunch at red lobster. I don't see any point in cut & paste the tkprof

result in the forum. Lab experts may have hundreds of excuses for this performance difference.

Also our consultant DBA promised to publish some article in Oracle Magazine regarding the

benefits of higher block size in Warehouse application very soon.

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 9, 2008 11:54 AM in response to: Jonathan Lewis
Reply

Jonathan,

Thanks for the response. I executed the set of scripts 3 more times:

* 8KB block size in locally managed 1MB uniform extent size

* 8KB block size in locally managed 1MB uniform extent size, hyper-threading disabled (it was enabled in all other tests)

* 16KB block size in locally managed 1MB uniform extent size

I haven't examined the results too closely yet, but what appears to be happening:

* Execution times for the 8KB block size locally managed 1MB uniform extent size increased over the times for 8KB block size

in ASSM

* Full index scan for the 8KB block size locally managed 1MB uniform extent size seems to have only used single block reads,

where it started with cycles of single block read followed by a 7 block read in the ASSM run.

* With hyperthreading disabled, the execution times increased.

> In the most recent post you've labelled the tests 7

> and 11 - but I think from a couple of posts back they

> were 8 and 11. (In either case we're talking about

> the 'select distinct' that does an index full scan

> with a "sort unique nosort").

The test numbering is a bit confusing:

Test 1: 16KB block size, setting up the tables and initial performance tests.

Test 2: 16KB block size, DBMS_XPLAN with statistics level set to ALL at the session level with 10046 and 10053 traces.

Test 3: 16KB block size, DBMS_STATS, simple select.

Test 4: 8KB block size, setting up the tables and initial performance tests.

Test 5: 8KB block size, DBMS_XPLAN with statistics level set to ALL at the session level with 10046 and 10053 traces.

Test 6: 8KB block size, DBMS_STATS, simple select.

Test 7: 8KB block size files in same location as original 16KB database, setting up the tables and initial performance tests.

Test 8: 8KB block size files in same location as original 16KB database, DBMS_XPLAN with statistics level set to ALL at the

session level with 10046 and 10053 traces.

Test 9: 8KB block size files in same location as original 16KB database, DBMS_STATS, simple select.

Test 10: 16KB block size files in same location as original 16KB database, setting up the tables and initial performance

tests.

Test 11: 16KB block size files in same location as original 16KB database, DBMS_XPLAN with statistics level set to ALL at the

session level with 10046 and 10053 traces.

Test 12: 16KB block size files in same location as original 16KB database, DBMS_STATS, simple select.

> There is an oddity with the results, though. The

> tkprof summaries show no "db file scattered reads",

> but the trace outputs do show scattered reads - is

> this from repeating the test ?

None of the tests were repeated, except that tests 2, 5, 8, and 11 were performed without bringing down the database, and

those tests repeated a SQL statement from the previous test number.

> The parameter _db_file_noncontig_mblock_read_count is

> supposed to limit the number of blocks in a single

> "db file parallel read", and there are a couple of

> related parameters (_ncmb_readahead_enabled,

> _ncmb_readahead_tracing) that are supposed to enable

> it and allow tracing. The default for the limit is

> 11 blocks - which could allow a very large index scan

> to operate more efficiently in a tablespace with a

> larger block size - but I have no idea what might

> happen when a paralllel read 'collapses' to a

> scattered read - maybe the 11 limit still applies,

> rather than the db_file_multiblock_read_count limit.

Incidentally, I used a script from your website to capture all hidden database parameters at the end of tests 3 and 6. If you

are interested, I will report what is found in those captured parameters.

> The timings are quite revealing - I think it's safe

> to assume that a reported time for a read that falls

> in the region of 350 microseconds isn't a disk read,

> but a memory fetch from a cache somewhere. So the

> "slow, quick quick quick ..." pattern may be giving

> us a clue about an asynchronous readahead mechanism.

Each of the two drives in the RAID 0 array has, I believe, an 8MB built-in cache. The drives also support command queuing,

meaning that the drives should be able to batch together some read requests for adjacent areas of the disk. I don't know if

either of these are affecting the read times.

> If you see odd patterns of this scattered read effect

> switching itself on and off, that's because CKPT

> controls the feature, and decides (every three

> seconds, I think) whether or not Oracle's "index

> prefetch" mechanism should be used.

>

> There's always more to think of when the results show

> large deviations from expected behaviour - the

> possible interference of pre-fetch and caching makes

> me wonder how much CPU time was consumed outside

> Oracle when you were doing the different tests.

That is a good question that I can't answer - I tried to minimize the outside influences of other programs consuming CPU time.

The server and client were both on the same computer. I did notice long elapsed parse times in the last 8KB set of tests that

I posted, when compared to the last 16KB set of tests that I posted.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Re: Larger vs. Small data block

Posted: Jun 9, 2008 1:43 PM in response to: sp009
Reply

Billy

Verreynne

Posts: 6,628

Registered: 5/27/99

Re: Larger vs. Small data block

Posted: Jun 9, 2008 3:22 PM in response to:
Reply

> We need the voice of real-world experience here . .

Ah yes.. because in the real world bytes are royal blue. And as we all know, "contrived" test cases use test data and those

bytes are a measly yellow.

And I/O on royal blue bytes are very different from I/O on measly yellow bytes. Which means that any test cases that clearly

show Oracle's behaviour, are not applicable as I/O on royal blue bytes are different... because says so.

<in the background sp009 is holding up a " 3:16" sign>

<insert picture here of me grabbing my coat>

David

Aldridge

Posts: 1,022

From: XM Satellite Radio,

Washington DC

Registered: 10/5/98

Re: Larger vs. Small data block

Posted: Jun 9, 2008 3:39 PM in response to: sp009
Reply

> Just finished the analysis of tkprof of a job

> scheduled on week-end, which process 30m rows,

> in production (16k db_block_size) and test (8k

> db_block_size) databases installed in identical

> Server Win 2003/64b ASM RAID. Before the job run, i

> refreshed the data in test so that both

> database will have same volume. Guess what, there is

> 18% difference in response time and

> the cpu utilization between the production and test

> database.

So just to be clear, the production server with higher block size showed an 18% lower cpu load and was 18% faster than the

test system that had the lower block size? That's interesting -- with the two percentages being the same it implies to me that

CPU is the predominant load on the servers, and that io wait is relatively very low, is that the case? Or were there off-

setting differences in other wait events (eg higher read time and lower write time)?

Also, what sort of load is this .. a batch job? Or regular OLTP operations?

Message was edited by: DA. Typo, changed "tow" to "two"

David Aldridge

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 9, 2008 4:01 PM in response to: sp009
Reply

> Just finished the analysis of tkprof of a job

> scheduled on week-end, which process 30m rows,

> in production (16k db_block_size) and test (8k

> db_block_size) databases installed in identical

> Server Win 2003/64b ASM RAID. Before the job run, i

> refreshed the data in test so that both

> database will have same volume. Guess what, there is

> 18% difference in response time and

> the cpu utilization between the production and test

> database. My supervisor discussed the

> End-result with our consultant DBA (From a world

> famous Consultancy Group (Oracle???),

> and is labeled as performance Guru!). End result? i

> am expecting a pay raise pretty soon and

> our consultant DBA owes me a lunch at red lobster. I

> don't see any point in cut & paste the tkprof

> result in the forum. Lab experts may have hundreds of

> excuses for this performance difference.

So, if I understand you correctly - you've analysed the tkprof results for a major job, but can't be bothered to make any

comments about anything you saw that could have been the cause of an 18% performance improvement.

Your boss is going to give you a pay rise because you exported a data warehouse from a database on a new server into a

database on an older server and said that a batch job ran 18% slower ? 18% shouldn't be too difficult all you have to do is

lose the odd index and you could make it MUCH slower.

Go on, just one little tkprof extract from each database that shows a meaningful performance improvement without a change in

execution plan. Surely it won't lose you your red lobster lunch, even if someone why there was a difference.

> Also our consultant DBA promised to publish some

> article in Oracle Magazine regarding the

> benefits of higher block size in Warehouse

> application very soon.

Please post a note on this thread when it happens - I'll be interested to see what he says.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 9, 2008 4:14 PM in response to: Charles Hooper
Reply

> I executed the set of scripts 3 more times:

> * 8KB block size in locally managed 1MB uniform extent size

> * 8KB block size in locally managed 1MB uniform extent size, hyper-threading disabled (it was enabled in all other tests)

> * 16KB block size in locally managed 1MB uniform extent size

* Tests 13, 14, 15 - 8KB block size in locally managed 1MB uniform extent size

* Tests 16, 17, 18 - 8KB block size in locally managed 1MB uniform extent size, no HT

* Tests 19, 20, 21 - 16KB block size in locally managed 1MB uniform extent size

I am considering running a new script against 8KB and 16KB databases that repeatedly updates table rows and related indexes to

determine if the database block size makes a difference in this test setup.

8KB UNIFORM 1MB
#TEST RUN 13 8KB UNIFORM 1MB

 COUNT(*)

11073

Elapsed: 00:00:00.70

Execution Plan...

Statistics

--

 641 recursive calls

 0 db block gets

 19569 consistent gets

 377 physical reads

 72 redo size

 413 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 25 sorts (memory)

 0 sorts (disk)

 1 rows processed

Table created.

Elapsed: 00:02:02.09

Commit complete.

Elapsed: 00:00:00.00

System altered.

Elapsed: 00:00:05.25

System altered.

Elapsed: 00:00:00.00

Index created.

Elapsed: 00:09:04.06

Table created.

Elapsed: 00:00:00.71

Index created.

Elapsed: 00:00:00.00

System altered.

Elapsed: 00:00:01.70

System altered.

Elapsed: 00:00:00.01

1000000 rows created.

Elapsed: 00:02:00.79

Execution Plan

--

Plan hash value: 3617692013

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 7179 | 988K| 178K (1)| 00:35:43 |

|* 1 | TABLE ACCESS FULL| T1 | 7179 | 988K| 178K (1)| 00:35:43 |

--

Predicate Information (identified by operation id):

 1 - filter("RN"<=100)

Note

 - dynamic sampling used for this statement

Statistics

--

 8382 recursive calls

 2855795 db block gets

 713983 consistent gets

 651640 physical reads

 470276500 redo size

 682 bytes sent via SQL*Net to client

 583 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 6 sorts (memory)

 0 sorts (disk)

 1000000 rows processed

Commit complete.

Elapsed: 00:00:00.01

System altered.

Elapsed: 00:00:15.53

System altered.

Elapsed: 00:00:00.03

Session altered.

Elapsed: 00:00:00.01

no rows selected

Elapsed: 00:01:09.56

Execution Plan

--

Plan hash value: 3617692013

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 7179 | 988K| 178K (1)| 00:35:40 |

|* 1 | TABLE ACCESS FULL| T1 | 7179 | 988K| 178K (1)| 00:35:40 |

--

Predicate Information (identified by operation id):

 1 - filter("STATUS"='NONE')

Note

 - dynamic sampling used for this statement

Statistics

--

 6 recursive calls

 0 db block gets

 652567 consistent gets

 651480 physical reads

 0 redo size

 1047 bytes sent via SQL*Net to client

 370 bytes received via SQL*Net from client

 1 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 0 rows processed

 COUNT(*)

1000000

Elapsed: 00:00:02.50

Execution Plan

--

Plan hash value: 1385691034

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 1864 (1)| 00:00:23 |

| 1 | SORT AGGREGATE | | 1 | | |

| 2 | INDEX FAST FULL SCAN| T2_IND1 | 857K| 1864 (1)| 00:00:23 |

Note

 - dynamic sampling used for this statement

Statistics

--

 32 recursive calls

 3 db block gets

 14179 consistent gets

 8036 physical reads

 507292 redo size

 411 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 1 rows processed

OWNER OBJECT_NAME

------------------------------ ------------------------------

SUBOBJECT_NAME

9454 rows selected.

Elapsed: 00:01:46.12

Execution Plan

--

Plan hash value: 1118578911

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 41M| 2030M| 808K (1)| 02:41:48 |

| 1 | SORT UNIQUE NOSORT| | 41M| 2030M| 808K (1)| 02:41:48 |

| 2 | INDEX FULL SCAN | T1_IND1 | 41M| 2030M| 276K (1)| 00:55:23 |

--

Note

 - dynamic sampling used for this statement

Statistics

--

 6 recursive calls

 0 db block gets

 275219 consistent gets

 274154 physical reads

 0 redo size

 299156 bytes sent via SQL*Net to client

 7311 bytes received via SQL*Net from client

 632 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 9454 rows processed

Session altered.

Elapsed: 00:00:00.00

#TEST RUN 14 8KB UNIFORM 1MB

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1;

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads |

| 1 | SORT UNIQUE NOSORT| | 1 | 41M| 9454 |00:02:36.66 | 274K| 274K|

| 2 | INDEX FULL SCAN | T1_IND1 | 1 | 41M| 50M|00:01:40.05 | 274K| 274K|

Note

 - dynamic sampling used for this statement

#TEST RUN 15 8KB UNIFORM 1MB

PL/SQL procedure successfully completed.

Elapsed: 00:02:30.14

PL/SQL procedure successfully completed.

Elapsed: 00:02:11.53

System altered.

Elapsed: 00:00:00.06

System altered.

Elapsed: 00:00:00.01

Session altered.

Elapsed: 00:00:00.03

no rows selected

Elapsed: 00:01:11.37

Execution Plan

--

Plan hash value: 2134347679

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 32 | 178K (1)| 00:35:42 |

| 1 | HASH UNIQUE | | 1 | 32 | 178K (1)| 00:35:42 |

|* 2 | TABLE ACCESS FULL| T1 | 1 | 32 | 178K (1)| 00:35:42 |

Predicate Information (identified by operation id):

 2 - filter("STATUS"='NONE')

Statistics

--

 1 recursive calls

 0 db block gets

 651991 consistent gets

 651480 physical reads

 0 redo size

 399 bytes sent via SQL*Net to client

 370 bytes received via SQL*Net from client

 1 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 0 rows processed

Session altered.

Elapsed: 00:00:00.00

TABLE_NAME NUM_ROWS BLOCKS AVG_ROW_LEN

------------------------------ ---------- ---------- -----------

T1 49640731 652598 88

T2

INDEX_NAME BLEVEL LEAF_BLOCKS DISTINCT_KEYS AVG_LEAF_BLOCKS_PER_KEY AVG_DATA_BLOCKS_PER_KEY

CLUSTERING_FACTOR

------------------------------ ---------- ----------- ------------- ----------------------- ----------------------- ----------

T1_IND1 3 273198 46842892 1 1

48002785

T2_IND1

8KB UNIFORM 1MB NO HYPER-THREADING
#TEST RUN 16 8KB UNIFORM 1MB NO HT

 COUNT(*)

11073

Elapsed: 00:00:00.68

Execution Plan...

Statistics

--

 1022 recursive calls

 0 db block gets

 19639 consistent gets

 382 physical reads

 116 redo size

 413 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 38 sorts (memory)

 0 sorts (disk)

 1 rows processed

Table created.

Elapsed: 00:02:00.46

Commit complete.

Elapsed: 00:00:00.00

System altered.

Elapsed: 00:00:04.85

System altered.

Elapsed: 00:00:00.00

Index created.

Elapsed: 00:09:12.43

Table created.

Elapsed: 00:00:00.67

Index created.

Elapsed: 00:00:00.01

System altered.

Elapsed: 00:00:01.73

System altered.

Elapsed: 00:00:00.01

1000000 rows created.

Elapsed: 00:02:04.07

Execution Plan

--

Plan hash value: 3617692013

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 7179 | 988K| 178K (1)| 00:35:37 |

|* 1 | TABLE ACCESS FULL| T1 | 7179 | 988K| 178K (1)| 00:35:37 |

--

Predicate Information (identified by operation id):

 1 - filter("RN"<=100)

Note

 - dynamic sampling used for this statement

Statistics

--

 8426 recursive calls

 2856404 db block gets

 713868 consistent gets

 651640 physical reads

 470073780 redo size

 682 bytes sent via SQL*Net to client

 583 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 6 sorts (memory)

 0 sorts (disk)

 1000000 rows processed

Commit complete.

Elapsed: 00:00:00.01

System altered.

Elapsed: 00:00:16.01

System altered.

Elapsed: 00:00:00.01

Session altered.

Elapsed: 00:00:00.03

no rows selected

Elapsed: 00:01:15.50

Execution Plan

--

Plan hash value: 3617692013

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 7179 | 988K| 177K (1)| 00:35:35 |

|* 1 | TABLE ACCESS FULL| T1 | 7179 | 988K| 177K (1)| 00:35:35 |

--

Predicate Information (identified by operation id):

 1 - filter("STATUS"='NONE')

Note

 - dynamic sampling used for this statement

Statistics

--

 5 recursive calls

 0 db block gets

 652567 consistent gets

 651480 physical reads

 0 redo size

 1047 bytes sent via SQL*Net to client

 370 bytes received via SQL*Net from client

 1 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 0 rows processed

 COUNT(*)

1000000

Elapsed: 00:00:02.40

Execution Plan

--

Plan hash value: 1385691034

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 1863 (1)| 00:00:23 |

| 1 | SORT AGGREGATE | | 1 | | |

| 2 | INDEX FAST FULL SCAN| T2_IND1 | 858K| 1863 (1)| 00:00:23 |

Note

 - dynamic sampling used for this statement

Statistics

--

 32 recursive calls

 3 db block gets

 14163 consistent gets

 7907 physical reads

 506172 redo size

 411 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 1 rows processed

OWNER OBJECT_NAME

------------------------------ ------------------------------

SUBOBJECT_NAME

9454 rows selected.

Elapsed: 00:01:42.03

Execution Plan

--

Plan hash value: 1118578911

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 41M| 2026M| 806K (1)| 02:41:22 |

| 1 | SORT UNIQUE NOSORT| | 41M| 2026M| 806K (1)| 02:41:22 |

| 2 | INDEX FULL SCAN | T1_IND1 | 41M| 2026M| 276K (1)| 00:55:21 |

--

Note

 - dynamic sampling used for this statement

Statistics

--

 5 recursive calls

 0 db block gets

 275255 consistent gets

 274185 physical reads

 0 redo size

 299135 bytes sent via SQL*Net to client

 7311 bytes received via SQL*Net from client

 632 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 9454 rows processed

Session altered.

Elapsed: 00:00:00.00

#TEST RUN 17 8KB UNIFORM 1MB NO HT

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1;

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads |

| 1 | SORT UNIQUE NOSORT| | 1 | 41M| 9454 |00:02:34.71 | 274K| 274K|

| 2 | INDEX FULL SCAN | T1_IND1 | 1 | 41M| 50M|00:01:40.05 | 274K| 274K|

Note

 - dynamic sampling used for this statement

#TEST RUN 18 8KB UNIFORM 1MB NO HT

PL/SQL procedure successfully completed.

Elapsed: 00:02:07.73

PL/SQL procedure successfully completed.

Elapsed: 00:02:10.93

System altered.

Elapsed: 00:00:00.06

System altered.

Elapsed: 00:00:00.01

Session altered.

Elapsed: 00:00:00.01

no rows selected

Elapsed: 00:01:08.59

Execution Plan

--

Plan hash value: 2134347679

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 31 | 178K (1)| 00:35:37 |

| 1 | HASH UNIQUE | | 1 | 31 | 178K (1)| 00:35:37 |

|* 2 | TABLE ACCESS FULL| T1 | 1 | 31 | 178K (1)| 00:35:37 |

Predicate Information (identified by operation id):

 2 - filter("STATUS"='NONE')

Statistics

--

 1 recursive calls

 0 db block gets

 651991 consistent gets

 651480 physical reads

 0 redo size

 399 bytes sent via SQL*Net to client

 370 bytes received via SQL*Net from client

 1 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 0 rows processed

Session altered.

Elapsed: 00:00:00.01

TABLE_NAME NUM_ROWS BLOCKS AVG_ROW_LEN

------------------------------ ---------- ---------- -----------

T1 50086655 652598 88

T2

INDEX_NAME BLEVEL LEAF_BLOCKS DISTINCT_KEYS AVG_LEAF_BLOCKS_PER_KEY AVG_DATA_BLOCKS_PER_KEY

CLUSTERING_FACTOR

------------------------------ ---------- ----------- ------------- ----------------------- ----------------------- ----------

T1_IND1 3 273232 47204490 1 1

48319593

T2_IND1

16KB UNIFORM 1MB

#TEST RUN 19 16KB BLOCK SIZE UNIFORM 1MB

 COUNT(*)

11073

Elapsed: 00:00:00.67

Execution Plan...

Statistics

--

 641 recursive calls

 0 db block gets

 19499 consistent gets

 209 physical reads

 0 redo size

 413 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 25 sorts (memory)

 0 sorts (disk)

 1 rows processed

Table created.

Elapsed: 00:01:53.65

Commit complete.

Elapsed: 00:00:00.00

System altered.

Elapsed: 00:00:03.00

System altered.

Elapsed: 00:00:00.01

Index created.

Elapsed: 00:08:41.06

Table created.

Elapsed: 00:00:00.85

Index created.

Elapsed: 00:00:00.01

System altered.

Elapsed: 00:00:01.17

System altered.

Elapsed: 00:00:00.01

1000000 rows created.

Elapsed: 00:01:40.81

Execution Plan

--

Plan hash value: 3617692013

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 751K| 101M| 122K (2)| 00:28:38 |

|* 1 | TABLE ACCESS FULL| T1 | 751K| 101M| 122K (2)| 00:28:38 |

--

Predicate Information (identified by operation id):

 1 - filter("RN"<=100)

Note

 - dynamic sampling used for this statement

Statistics

--

 8029 recursive calls

 2492121 db block gets

 353899 consistent gets

 321655 physical reads

 446333292 redo size

 681 bytes sent via SQL*Net to client

 583 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 6 sorts (memory)

 0 sorts (disk)

 1000000 rows processed

Commit complete.

Elapsed: 00:00:00.01

System altered.

Elapsed: 00:00:14.76

System altered.

Elapsed: 00:00:00.01

Session altered.

Elapsed: 00:00:00.03

no rows selected

Elapsed: 00:01:08.53

Execution Plan

--

Plan hash value: 3617692013

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 3544 | 487K| 122K (2)| 00:28:34 |

|* 1 | TABLE ACCESS FULL| T1 | 3544 | 487K| 122K (2)| 00:28:34 |

--

Predicate Information (identified by operation id):

 1 - filter("STATUS"='NONE')

Note

 - dynamic sampling used for this statement

Statistics

--

 5 recursive calls

 0 db block gets

 322659 consistent gets

 321574 physical reads

 0 redo size

 1047 bytes sent via SQL*Net to client

 370 bytes received via SQL*Net from client

 1 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 0 rows processed

 COUNT(*)

1000000

Elapsed: 00:00:02.57

Execution Plan

--

Plan hash value: 1385691034

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 1232 (1)| 00:00:18 |

| 1 | SORT AGGREGATE | | 1 | | |

| 2 | INDEX FAST FULL SCAN| T2_IND1 | 909K| 1232 (1)| 00:00:18 |

Note

 - dynamic sampling used for this statement

Statistics

--

 32 recursive calls

 3 db block gets

 6815 consistent gets

 4034 physical reads

 242216 redo size

 411 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 1 rows processed

OWNER OBJECT_NAME

------------------------------ ------------------------------

SUBOBJECT_NAME

9454 rows selected.

Elapsed: 00:01:18.92

Execution Plan

--

Plan hash value: 1118578911

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 54M| 2666M| 574K (1)| 02:14:01 |

| 1 | SORT UNIQUE NOSORT| | 54M| 2666M| 574K (1)| 02:14:01 |

| 2 | INDEX FULL SCAN | T1_IND1 | 54M| 2666M| 136K (1)| 00:31:51 |

--

Note

 - dynamic sampling used for this statement

Statistics

--

 5 recursive calls

 0 db block gets

 136284 consistent gets

 135107 physical reads

 0 redo size

 299135 bytes sent via SQL*Net to client

 7311 bytes received via SQL*Net from client

 632 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 9454 rows processed

Session altered.

Elapsed: 00:00:00.00

#TEST RUN 20 16KB BLOCK SIZE UNIFORM 1MB

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1;

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads |

| 1 | SORT UNIQUE NOSORT| | 1 | 54M| 9454 |00:02:10.55 | 135K| 135K|

| 2 | INDEX FULL SCAN | T1_IND1 | 1 | 54M| 50M|00:01:40.04 | 135K| 135K|

Note

 - dynamic sampling used for this statement

#TEST RUN 21 16KB BLOCK SIZE UNIFORM 1MB

PL/SQL procedure successfully completed.

Elapsed: 00:02:10.01

PL/SQL procedure successfully completed.

Elapsed: 00:02:21.18

System altered.

Elapsed: 00:00:00.07

System altered.

Elapsed: 00:00:00.00

Session altered.

Elapsed: 00:00:00.03

no rows selected

Elapsed: 00:01:07.40

Execution Plan

--

Plan hash value: 2134347679

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 33 | 122K (2)| 00:28:32 |

| 1 | HASH UNIQUE | | 1 | 33 | 122K (2)| 00:28:32 |

|* 2 | TABLE ACCESS FULL| T1 | 1 | 33 | 122K (2)| 00:28:32 |

Predicate Information (identified by operation id):

 2 - filter("STATUS"='NONE')

Statistics

--

 1 recursive calls

 0 db block gets

 322079 consistent gets

 321574 physical reads

 0 redo size

 399 bytes sent via SQL*Net to client

 370 bytes received via SQL*Net from client

 1 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 0 rows processed

Session altered.

Elapsed: 00:00:00.00

TABLE_NAME NUM_ROWS BLOCKS AVG_ROW_LEN

------------------------------ ---------- ---------- -----------

T1 50113013 322129 88

T2

INDEX_NAME BLEVEL LEAF_BLOCKS DISTINCT_KEYS AVG_LEAF_BLOCKS_PER_KEY AVG_DATA_BLOCKS_PER_KEY

CLUSTERING_FACTOR

------------------------------ ---------- ----------- ------------- ----------------------- ----------------------- ----------

T1_IND1 2 139800 48861273 1 1

49619952

T2_IND1

The TKPROF output will follow.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 9, 2008 4:17 PM in response to:
Reply

>Can you get him to pop-in here and tell us about it?

I think, it’s up to that person and is aware of this thread. TOE prevents me to publish any

other details, but i am expecting the promised article from him.In fact he was kind enough

to share some of his “Experience” with “Experts” from Oracle itself.

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 9, 2008 4:26 PM in response to: David Aldridge
Reply

> Also, what sort of load is this .. a batch job? Or

> regular OLTP operations?

>

> Message was edited by: DA. Typo, changed "tow" to

> "two"

> David Aldridge

[XML Row Data from OLTP] --> Batch Job --> [DW] --> Batch Job --> Reporting System

We compared the performance based on overall job completion intervals in various stages

and the cpu+elapsed in tkprof for each query executed. Also we have scheduled ADDM

to monitor the performance and compared the results for both the database during the batch job

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 9, 2008 4:38 PM in response to: Jonathan Lewis
Reply

> Go on, just one little tkprof extract from each

> database that shows a meaningful performance

> improvement without a change in execution plan.

> Surely it won't lose you your red lobster lunch, even

> if someone why there was a difference.

Jonathan,

I don't see any point in publishing the results any more. After all i am not here to prove

“I am DAM right and you are Wrong", but to share my experience with the performance

improvement in my DW application. As i said earlier, you may have hundreds of other

excuses. What i see is the response time, cpu utilization and the network traffic.

sp009

Niall

Litchfield

Re: Larger vs. Small data block

Posted: Jun 9, 2008 5:47 PM in response to:
Reply

Posts: 301

From: Hampshire UK

Registered: 7/4/99

> Hi Niall,

>

> >> Possibly it's somewhat unfortunate for your case

> then that Ashenfeltzer's predictions were more

> reliable than Robert Parker's.

>

> Excellent, you are paying attention!

>

> Obviously wine tasting is a subjective thing (I'm

> just a country redneck, not an oenophile!), and the

> supertatives used wine snobs strike me as ridiculous!

> I like the Borat approach to wine tasting, myself:

>

> http://www.youtube.com/watch?v=oKcWtvEzdR8

>

> On the other hand, Oracle tuning has an objective

> measure of success, namely faster throughput and

> response time.

tasting certainly is, but price predicition is rather objective. It is in the objective arena that the guru lost.

> My point was that the decision rules of Oracle

> performance tuning are too complex for automation,

> else it would have been done years ago

I don't know, was it tried and found wanting years ago, tried and found difficult and abandoned, or just not tried? Too

complex sounds like an admission of failure.

Niall

dbms.jedi

Posts: 1

Registered: 5/25/08

Re: Larger vs. Small data block

Posted: Jun 9, 2008 6:45 PM in response to: sp009
Reply

> Just finished the analysis of tkprof of a job scheduled on week-end, which process 30m rows,

> in production (16k db_block_size) and test (8k db_block_size) databases installed in identical

> Server Win 2003/64b ASM RAID. Before the job run, i refreshed the data in test so that both

> database will have same volume. Guess what, there is 18% difference in response time and

> the cpu utilization between the production and test database. My supervisor discussed the

> End-result with our consultant DBA (From a world famous Consultancy Group (Oracle???),

> and is labeled as performance Guru!). End result? i am expecting a pay raise pretty soon and

> our consultant DBA owes me a lunch at red lobster. I don't see any point in cut & paste the tkprof

> result in the forum. Lab experts may have hundreds of excuses for this performance difference.

> Also our consultant DBA promised to publish some article in Oracle Magazine regarding the

> benefits of higher block size in Warehouse application very soon.

>

There are a few things that are unclear to me.

1) If your production database has a 16k db_block_size, then what was the purpose of cloning it to an 8k block test db? Just

to test that a db with 8k block is slower? (and getting a free lunch?)

2) What does 18% represent? CPU consumption? Elapsed time? Or was there 18% reduction in both? What did you use to capture the

metrics to come up with the 18% CPU (sar, vmstat, Oracle tool)?

3) Could you describe what operations take place in this job? CTAS, inserts, updates, selects? If a mix, a rough breakdown.

4) Do you use Parallel Query or Compression?

5) It would be useful, and another case of real-world data, if you could share some technical details about this observation.

Don't let the critics get to you. Let the numbers to the talking.

6) So you have this performance Guru, who is publishing an article in Oracle Magazine about the benefits of a larger block

size in a data warehouse, who bet you that a 8k db_block_size would be faster than 16k (hence you won the bet). Am I missing

something or was that a bad bet for him to take, given he would have some insight that 16k would be better, no?

Cheers.

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 9, 2008 6:47 PM in response to: Charles Hooper
Reply

TKPROF output for the last 3 sets of tests follows:

Test 13 8KB UNIFORM 1MB:

**

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.02 1 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 632 35.40 103.21 274152 274642 0 9454

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 634 35.40 103.24 274153 274644 0 9454

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 9454 SORT UNIQUE NOSORT (cr=274642 pr=274152 pw=0 time=105558079 us)

50000000 INDEX FULL SCAN T1_IND1 (cr=274642 pr=274152 pw=0 time=100021899 us)(object id 11757)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 632 0.00 0.00

 db file scattered read 897 0.03 2.90

 db file sequential read 246668 0.03 68.94

 SQL*Net message from client 632 0.01 2.76

**

Test 16 8KB UNIFORM 1MB NO HYPER-THREADING:

**

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.01 1 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 632 33.75 99.50 274183 274678 0 9454

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 634 33.75 99.52 274184 274680 0 9454

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 9454 SORT UNIQUE NOSORT (cr=274678 pr=274183 pw=0 time=96086174 us)

50000000 INDEX FULL SCAN T1_IND1 (cr=274678 pr=274183 pw=0 time=100021870 us)(object id 11757)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 632 0.00 0.00

 db file scattered read 877 0.04 2.62

 db file sequential read 247316 0.03 66.02

 SQL*Net message from client 632 0.01 2.38

**

Test 19 16KB UNIFORM 1MB:

**

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.02 1 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 632 29.09 76.03 135106 135703 0 9454

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 634 29.09 76.05 135107 135705 0 9454

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 9454 SORT UNIQUE NOSORT (cr=135703 pr=135106 pw=0 time=79117626 us)

50000000 INDEX FULL SCAN T1_IND1 (cr=135703 pr=135106 pw=0 time=100030548 us)(object id 11767)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 632 0.00 0.00

 db file scattered read 902 0.02 2.68

 db file sequential read 121747 0.04 46.01

 SQL*Net message from client 632 0.01 2.76

**

Test 13 8KB UNIFORM 1MB:

**

SELECT

 *

FROM

 T1

WHERE

 STATUS='NONE'

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.01 0.02 1 1 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 11.90 68.78 651354 651991 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 3 11.92 68.80 651355 651992 0 0

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 0 TABLE ACCESS FULL T1 (cr=651991 pr=651354 pw=0 time=68787056 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 db file sequential read 1 0.01 0.01

 SQL*Net message to client 1 0.00 0.00

 db file scattered read 5149 0.05 57.11

 SQL*Net message from client 1 0.01 0.01

10046 Trace File:

PARSE #8:c=62500,e=756691,p=126,cr=576,cu=0,mis=1,r=0,dep=0,og=1,tim=1013390366

EXEC #8:c=0,e=30,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,tim=1013390547

WAIT #8: nam='SQL*Net message to client' ela= 3 driver id=1413697536 #bytes=1 p3=0 obj#=11756 tim=1013390588

WAIT #8: nam='db file scattered read' ela= 22563 file#=4 block#=13 blocks=124 obj#=11756 tim=1013413446

WAIT #8: nam='db file scattered read' ela= 10851 file#=4 block#=139 blocks=126 obj#=11756 tim=1013426530

WAIT #8: nam='db file scattered read' ela= 17966 file#=4 block#=267 blocks=126 obj#=11756 tim=1013446717

WAIT #8: nam='db file scattered read' ela= 9833 file#=4 block#=395 blocks=126 obj#=11756 tim=1013458815

WAIT #8: nam='db file scattered read' ela= 9822 file#=4 block#=523 blocks=126 obj#=11756 tim=1013470889

WAIT #8: nam='db file scattered read' ela= 10823 file#=4 block#=651 blocks=126 obj#=11756 tim=1013483979

WAIT #8: nam='db file scattered read' ela= 9809 file#=4 block#=779 blocks=126 obj#=11756 tim=1013496047

WAIT #8: nam='db file scattered read' ela= 9864 file#=4 block#=907 blocks=126 obj#=11756 tim=1013508149

WAIT #8: nam='db file scattered read' ela= 10431 file#=4 block#=1035 blocks=126 obj#=11756 tim=1013521209

WAIT #8: nam='db file scattered read' ela= 12268 file#=4 block#=1163 blocks=126 obj#=11756 tim=1013535706

WAIT #8: nam='db file scattered read' ela= 9776 file#=4 block#=1291 blocks=126 obj#=11756 tim=1013547806

WAIT #8: nam='db file scattered read' ela= 10788 file#=4 block#=1419 blocks=126 obj#=11756 tim=1013560865

WAIT #8: nam='db file scattered read' ela= 9850 file#=4 block#=1547 blocks=126 obj#=11756 tim=1013572967

WAIT #8: nam='db file scattered read' ela= 9841 file#=4 block#=1675 blocks=126 obj#=11756 tim=1013585035

WAIT #8: nam='db file scattered read' ela= 10831 file#=4 block#=1803 blocks=126 obj#=11756 tim=1013598125

WAIT #8: nam='db file scattered read' ela= 9838 file#=4 block#=1931 blocks=126 obj#=11756 tim=1013610197

WAIT #8: nam='db file scattered read' ela= 9846 file#=4 block#=2059 blocks=126 obj#=11756 tim=1013622299

WAIT #8: nam='db file scattered read' ela= 10833 file#=4 block#=2187 blocks=126 obj#=11756 tim=1013635383

WAIT #8: nam='db file scattered read' ela= 9777 file#=4 block#=2315 blocks=126 obj#=11756 tim=1013647455

WAIT #8: nam='db file scattered read' ela= 9846 file#=4 block#=2443 blocks=126 obj#=11756 tim=1013659558

WAIT #8: nam='db file scattered read' ela= 10803 file#=4 block#=2571 blocks=126 obj#=11756 tim=1013672614

...

WAIT #8: nam='db file scattered read' ela= 9792 file#=4 block#=651785 blocks=128 obj#=11756 tim=1082107350

WAIT #8: nam='db file scattered read' ela= 9850 file#=4 block#=651913 blocks=128 obj#=11756 tim=1082119450

WAIT #8: nam='db file scattered read' ela= 10765 file#=4 block#=652041 blocks=128 obj#=11756 tim=1082132535

WAIT #8: nam='db file scattered read' ela= 12196 file#=4 block#=652170 blocks=127 obj#=11756 tim=1082147070

WAIT #8: nam='db file scattered read' ela= 9846 file#=4 block#=652297 blocks=128 obj#=11756 tim=1082159171

WAIT #8: nam='db file scattered read' ela= 10775 file#=4 block#=652425 blocks=128 obj#=11756 tim=1082172227

WAIT #8: nam='db file scattered read' ela= 2512 file#=4 block#=652553 blocks=54 obj#=11756 tim=1082176885

FETCH #8:c=11906250,e=68787060,p=651354,cr=651991,cu=0,mis=0,r=0,dep=0,og=1,tim=1082177688

WAIT #8: nam='SQL*Net message from client' ela= 16292 driver id=1413697536 #bytes=1 p3=0 obj#=11756 tim=1082194088

STAT #8 id=1 cnt=0 pid=0 pos=1 obj=11756 op='TABLE ACCESS FULL T1 (cr=651991 pr=651354 pw=0 time=68787056 us)'

**

Test 16 8KB UNIFORM 1MB NO HYPER-THREADING:

**

SELECT

 *

FROM

 T1

WHERE

 STATUS='NONE'

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.01 1 1 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 12.37 74.71 651354 651991 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 3 12.37 74.73 651355 651992 0 0

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 0 TABLE ACCESS FULL T1 (cr=651991 pr=651354 pw=0 time=74716184 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 db file sequential read 1 0.01 0.01

 SQL*Net message to client 1 0.00 0.00

 db file scattered read 5149 0.05 63.02

 SQL*Net message from client 1 0.00 0.00

10046 Trace File:

PARSE #8:c=78125,e=777584,p=126,cr=576,cu=0,mis=1,r=0,dep=0,og=1,tim=1025708611

EXEC #8:c=0,e=29,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,tim=1025708796

WAIT #8: nam='SQL*Net message to client' ela= 3 driver id=1413697536 #bytes=1 p3=0 obj#=11756 tim=1025708837

WAIT #8: nam='db file scattered read' ela= 23747 file#=4 block#=13 blocks=124 obj#=11756 tim=1025732878

WAIT #8: nam='db file scattered read' ela= 29340 file#=4 block#=139 blocks=126 obj#=11756 tim=1025764447

WAIT #8: nam='db file scattered read' ela= 24745 file#=4 block#=267 blocks=126 obj#=11756 tim=1025791426

WAIT #8: nam='db file scattered read' ela= 28987 file#=4 block#=395 blocks=126 obj#=11756 tim=1025823029

WAIT #8: nam='db file scattered read' ela= 24659 file#=4 block#=523 blocks=126 obj#=11756 tim=1025849982

WAIT #8: nam='db file scattered read' ela= 29358 file#=4 block#=651 blocks=126 obj#=11756 tim=1025881582

WAIT #8: nam='db file scattered read' ela= 26131 file#=4 block#=779 blocks=126 obj#=11756 tim=1025909975

WAIT #8: nam='db file scattered read' ela= 26882 file#=4 block#=907 blocks=126 obj#=11756 tim=1025939152

WAIT #8: nam='db file scattered read' ela= 27170 file#=4 block#=1035 blocks=126 obj#=11756 tim=1025968553

WAIT #8: nam='db file scattered read' ela= 20914 file#=4 block#=1163 blocks=126 obj#=11756 tim=1025991754

WAIT #8: nam='db file scattered read' ela= 24740 file#=4 block#=1291 blocks=126 obj#=11756 tim=1026018761

WAIT #8: nam='db file scattered read' ela= 12552 file#=4 block#=1419 blocks=126 obj#=11756 tim=1026033608

WAIT #8: nam='db file scattered read' ela= 32144 file#=4 block#=1547 blocks=126 obj#=11756 tim=1026067977

WAIT #8: nam='db file scattered read' ela= 12595 file#=4 block#=1675 blocks=126 obj#=11756 tim=1026082825

WAIT #8: nam='db file scattered read' ela= 49819 file#=4 block#=1803 blocks=126 obj#=11756 tim=1026134878

WAIT #8: nam='db file scattered read' ela= 12483 file#=4 block#=1931 blocks=126 obj#=11756 tim=1026149727

WAIT #8: nam='db file scattered read' ela= 16472 file#=4 block#=2059 blocks=126 obj#=11756 tim=1026168445

WAIT #8: nam='db file scattered read' ela= 12557 file#=4 block#=2187 blocks=126 obj#=11756 tim=1026183262

WAIT #8: nam='db file scattered read' ela= 17805 file#=4 block#=2315 blocks=126 obj#=11756 tim=1026203303

WAIT #8: nam='db file scattered read' ela= 26915 file#=4 block#=2443 blocks=126 obj#=11756 tim=1026232483

WAIT #8: nam='db file scattered read' ela= 10767 file#=4 block#=2571 blocks=126 obj#=11756 tim=1026245538

...

WAIT #8: nam='db file scattered read' ela= 9812 file#=4 block#=651913 blocks=128 obj#=11756 tim=1100366689

WAIT #8: nam='db file scattered read' ela= 10792 file#=4 block#=652041 blocks=128 obj#=11756 tim=1100379776

WAIT #8: nam='db file scattered read' ela= 12267 file#=4 block#=652170 blocks=127 obj#=11756 tim=1100394310

WAIT #8: nam='db file scattered read' ela= 9792 file#=4 block#=652297 blocks=128 obj#=11756 tim=1100406412

WAIT #8: nam='db file scattered read' ela= 10790 file#=4 block#=652425 blocks=128 obj#=11756 tim=1100419469

WAIT #8: nam='db file scattered read' ela= 2647 file#=4 block#=652553 blocks=54 obj#=11756 tim=1100424242

FETCH #8:c=12375000,e=74716188,p=651354,cr=651991,cu=0,mis=0,r=0,dep=0,og=1,tim=1100425065

WAIT #8: nam='SQL*Net message from client' ela= 611 driver id=1413697536 #bytes=1 p3=0 obj#=11756 tim=1100425772

*** SESSION ID:(215.3) 2008-06-08 19:19:17.562

STAT #8 id=1 cnt=0 pid=0 pos=1 obj=11756 op='TABLE ACCESS FULL T1 (cr=651991 pr=651354 pw=0 time=74716184 us)'

**

Test 19 16KB UNIFORM 1MB:

**

SELECT

 *

FROM

 T1

WHERE

 STATUS='NONE'

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.01 1 1 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 9.68 67.68 321440 322079 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 3 9.68 67.70 321441 322080 0 0

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 0 TABLE ACCESS FULL T1 (cr=322079 pr=321440 pw=0 time=67682309 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 db file sequential read 2 0.01 0.01

 SQL*Net message to client 1 0.00 0.00

 db file scattered read 5098 0.05 58.14

 SQL*Net message from client 1 0.02 0.02

10046 Trace File:

PARSE #13:c=125000,e=807591,p=134,cr=580,cu=0,mis=1,r=0,dep=0,og=1,tim=994728652

EXEC #13:c=0,e=27,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,tim=994728829

WAIT #13: nam='SQL*Net message to client' ela= 2 driver id=1413697536 #bytes=1 p3=0 obj#=11766 tim=994728869

WAIT #13: nam='db file scattered read' ela= 21658 file#=4 block#=8 blocks=61 obj#=11766 tim=994750723

WAIT #13: nam='db file scattered read' ela= 10290 file#=4 block#=70 blocks=63 obj#=11766 tim=994762791

WAIT #13: nam='db file scattered read' ela= 34258 file#=4 block#=134 blocks=63 obj#=11766 tim=994798898

WAIT #13: nam='db file scattered read' ela= 10220 file#=4 block#=198 blocks=63 obj#=11766 tim=994811001

WAIT #13: nam='db file scattered read' ela= 20595 file#=4 block#=262 blocks=63 obj#=11766 tim=994833446

WAIT #13: nam='db file scattered read' ela= 11211 file#=4 block#=326 blocks=63 obj#=11766 tim=994846531

WAIT #13: nam='db file scattered read' ela= 10120 file#=4 block#=390 blocks=63 obj#=11766 tim=994858602

WAIT #13: nam='db file scattered read' ela= 10254 file#=4 block#=454 blocks=63 obj#=11766 tim=994870706

WAIT #13: nam='db file scattered read' ela= 11203 file#=4 block#=518 blocks=63 obj#=11766 tim=994883763

WAIT #13: nam='db file scattered read' ela= 12652 file#=4 block#=582 blocks=63 obj#=11766 tim=994898261

WAIT #13: nam='db file scattered read' ela= 10240 file#=4 block#=646 blocks=63 obj#=11766 tim=994910361

WAIT #13: nam='db file scattered read' ela= 11216 file#=4 block#=710 blocks=63 obj#=11766 tim=994923420

WAIT #13: nam='db file scattered read' ela= 10218 file#=4 block#=774 blocks=63 obj#=11766 tim=994935524

WAIT #13: nam='db file scattered read' ela= 10141 file#=4 block#=838 blocks=63 obj#=11766 tim=994947593

WAIT #13: nam='db file scattered read' ela= 11218 file#=4 block#=902 blocks=63 obj#=11766 tim=994960683

WAIT #13: nam='db file scattered read' ela= 10191 file#=4 block#=966 blocks=63 obj#=11766 tim=994972754

WAIT #13: nam='db file scattered read' ela= 10250 file#=4 block#=1030 blocks=63 obj#=11766 tim=994984855

WAIT #13: nam='db file scattered read' ela= 11238 file#=4 block#=1094 blocks=63 obj#=11766 tim=994997942

WAIT #13: nam='db file scattered read' ela= 10231 file#=4 block#=1158 blocks=63 obj#=11766 tim=995010021

WAIT #13: nam='db file scattered read' ela= 10230 file#=4 block#=1222 blocks=63 obj#=11766 tim=995022118

WAIT #13: nam='db file scattered read' ela= 11236 file#=4 block#=1286 blocks=63 obj#=11766 tim=995035218

...

WAIT #13: nam='db file scattered read' ela= 10944 file#=4 block#=321733 blocks=64 obj#=11766 tim=1062345199

WAIT #13: nam='db file scattered read' ela= 10198 file#=4 block#=321797 blocks=64 obj#=11766 tim=1062357304

WAIT #13: nam='db file scattered read' ela= 10165 file#=4 block#=321861 blocks=64 obj#=11766 tim=1062369370

WAIT #13: nam='db file scattered read' ela= 11204 file#=4 block#=321925 blocks=64 obj#=11766 tim=1062382459

WAIT #13: nam='db file scattered read' ela= 10189 file#=4 block#=321989 blocks=64 obj#=11766 tim=1062394527

WAIT #13: nam='db file scattered read' ela= 10217 file#=4 block#=322053 blocks=64 obj#=11766 tim=1062406633

WAIT #13: nam='db file scattered read' ela= 2336 file#=4 block#=322117 blocks=17 obj#=11766 tim=1062410764

FETCH #13:c=9687500,e=67682313,p=321440,cr=322079,cu=0,mis=0,r=0,dep=0,og=1,tim=1062411223

WAIT #13: nam='SQL*Net message from client' ela= 28025 driver id=1413697536 #bytes=1 p3=0 obj#=11766 tim=1062439340

STAT #13 id=1 cnt=0 pid=0 pos=1 obj=11766 op='TABLE ACCESS FULL T1 (cr=322079 pr=321440 pw=0 time=67682309 us)'

**

Test 13 8KB UNIFORM 1MB:

**

SELECT

 COUNT(*)

FROM

 T2

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.01 0.01 2 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 0.28 1.64 6979 13950 2 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 0.29 1.66 6981 13952 2 1

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=13950 pr=6979 pw=0 time=1647916 us)

1000000 INDEX FAST FULL SCAN T2_IND1 (cr=13950 pr=6979 pw=0 time=321071 us)(object id 11759)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 db file sequential read 7 0.01 0.04

 db file parallel read 1 0.28 0.28

 db file scattered read 110 0.03 1.02

 SQL*Net message from client 2 0.00 0.00

**

Test 16 8KB UNIFORM 1MB NO HYPER-THREADING:

**

SELECT

 COUNT(*)

FROM

 T2

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.01 2 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 0.26 1.57 6974 13934 2 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 0.26 1.59 6976 13936 2 1

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=13934 pr=6974 pw=0 time=1572482 us)

1000000 INDEX FAST FULL SCAN T2_IND1 (cr=13934 pr=6974 pw=0 time=2245925 us)(object id 11759)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 db file sequential read 2 0.01 0.01

 db file parallel read 1 0.20 0.20

 db file scattered read 110 0.03 1.06

 SQL*Net message from client 2 0.00 0.00

**

Test 19 16KB UNIFORM 1MB:

**

SELECT

 COUNT(*)

FROM

 T2

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.02 2 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 0.21 1.72 3332 6655 2 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 0.21 1.74 3334 6657 2 1

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=6655 pr=3332 pw=0 time=1723813 us)

1000000 INDEX FAST FULL SCAN T2_IND1 (cr=6655 pr=3332 pw=0 time=211293 us)(object id 11769)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 db file sequential read 7 0.02 0.06

 db file parallel read 1 0.16 0.16

 db file scattered read 53 0.03 1.23

 SQL*Net message from client 2 0.00 0.00

**

Test 13 8KB UNIFORM 1MB:

**

OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 16 0.03 0.08 5 10 0 0

Execute 17 0.01 0.09 18 142 8 8

Fetch 642 47.59 173.65 932485 940583 2 9498

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 675 47.64 173.83 932508 940735 10 9506

Misses in library cache during parse: 9

Misses in library cache during execute: 3

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 668 0.00 0.00

 SQL*Net message from client 668 0.01 2.79

 db file sequential read 246703 0.03 69.16

 db file scattered read 6156 0.05 61.04

 db file parallel read 1 0.28 0.28

**

Test 16 8KB UNIFORM 1MB NO HYPER-THREADING:

**

OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 16 0.00 0.08 5 10 0 0

Execute 17 0.03 0.09 19 142 8 8

Fetch 642 46.39 175.80 932511 940603 2 9498

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 675 46.42 175.97 932535 940755 10 9506

Misses in library cache during parse: 9

Misses in library cache during execute: 3

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 668 0.00 0.00

 SQL*Net message from client 668 0.01 2.40

 db file sequential read 247344 0.03 66.19

 db file scattered read 6137 0.05 66.71

 db file parallel read 1 0.20 0.20

**

Test 19 16KB UNIFORM 1MB:

**

OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 16 0.00 0.08 5 10 0 0

Execute 17 0.00 0.07 15 136 8 8

Fetch 642 39.00 145.44 459878 464437 2 9498

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 675 39.00 145.60 459898 464583 10 9506

Misses in library cache during parse: 9

Misses in library cache during execute: 3

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 668 0.00 0.00

 SQL*Net message from client 668 0.02 2.80

 db file sequential read 121778 0.04 46.24

 db file scattered read 6053 0.05 62.06

 db file parallel read 1 0.16 0.16

**

Test 14 8KB UNIFORM 1MB:

**

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.01 0.16 0 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 95 83.32 156.69 274014 274108 0 9454

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 97 83.34 156.86 274014 274110 0 9454

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 9454 SORT UNIQUE NOSORT (cr=274108 pr=274014 pw=0 time=156655409 us)

50000000 INDEX FULL SCAN T1_IND1 (cr=274108 pr=274014 pw=0 time=100047277 us)(object id 11757)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 95 0.00 0.00

 db file sequential read 274014 0.02 76.88

 SQL*Net more data to client 85 0.00 0.00

 SQL*Net message from client 95 0.68 0.73

**

Test 17 8KB UNIFORM 1MB NO HYPER-THREADING:

**

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.06 0.16 0 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 95 84.09 154.75 274048 274142 0 9454

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 97 84.15 154.91 274048 274144 0 9454

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 9454 SORT UNIQUE NOSORT (cr=274142 pr=274048 pw=0 time=154707761 us)

50000000 INDEX FULL SCAN T1_IND1 (cr=274142 pr=274048 pw=0 time=100051703 us)(object id 11757)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 95 0.00 0.00

 db file sequential read 274048 0.03 74.96

 SQL*Net more data to client 84 0.00 0.01

 SQL*Net message from client 95 0.68 0.73

**

Test 20 16KB UNIFORM 1MB:

**

SELECT /*+ INDEX(T1) */ DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.07 0.14 0 2 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 95 77.56 130.58 135072 135166 0 9454

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 97 77.64 130.73 135072 135168 0 9454

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 9454 SORT UNIQUE NOSORT (cr=135166 pr=135072 pw=0 time=130551689 us)

50000000 INDEX FULL SCAN T1_IND1 (cr=135166 pr=135072 pw=0 time=100037933 us)(object id 11767)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 95 0.00 0.00

 db file sequential read 135072 0.03 54.33

 SQL*Net more data to client 84 0.00 0.00

 SQL*Net message from client 95 0.11 0.15

**

Test 15 8KB UNIFORM 1MB:

**

SELECT DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

WHERE

 STATUS='NONE'

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.02 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 12.14 71.07 651480 651991 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 3 12.14 71.09 651480 651991 0 0

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 0 HASH UNIQUE (cr=651991 pr=651480 pw=0 time=71073190 us)

 0 TABLE ACCESS FULL T1 (cr=651991 pr=651480 pw=0 time=71073083 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 1 0.00 0.00

 db file sequential read 11 0.01 0.08

 db file scattered read 5099 0.05 59.47

 SQL*Net message from client 1 0.01 0.01

**

Test 18 8KB UNIFORM 1MB NO HYPER-THREADING:

**

SELECT DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

WHERE

 STATUS='NONE'

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.02 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 11.68 68.24 651480 651991 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 3 11.68 68.26 651480 651991 0 0

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 0 HASH UNIQUE (cr=651991 pr=651480 pw=0 time=68245800 us)

 0 TABLE ACCESS FULL T1 (cr=651991 pr=651480 pw=0 time=68245706 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 1 0.00 0.00

 db file sequential read 11 0.01 0.07

 db file scattered read 5099 0.05 56.71

 SQL*Net message from client 1 0.02 0.02

**

Test 21 16KB UNIFORM 1MB:

**

SELECT DISTINCT

 OWNER,

 OBJECT_NAME,

 SUBOBJECT_NAME

FROM

 T1

WHERE

 STATUS='NONE'

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.01 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 9.23 67.17 321574 322079 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 3 9.23 67.18 321574 322079 0 0

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 30

Rows Row Source Operation

------- ---

 0 HASH UNIQUE (cr=322079 pr=321574 pw=0 time=67171002 us)

 0 TABLE ACCESS FULL T1 (cr=322079 pr=321574 pw=0 time=67170929 us)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 1 0.00 0.00

 db file sequential read 6 0.01 0.03

 db file scattered read 5034 0.04 57.78

 SQL*Net message from client 1 0.04 0.04

**

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

David

Aldridge

Posts: 1,022

From: XM Satellite Radio,

Washington DC

Registered: 10/5/98

Re: Larger vs. Small data block

Posted: Jun 9, 2008 6:57 PM in response to: sp009
Reply

>

> [XML Row Data from OLTP] --> Batch Job --> [DW] -->

> Batch Job --> Reporting System

>

> We compared the performance based on overall job

> completion intervals in various stages

> and the cpu+elapsed in tkprof for each query

> executed. Also we have scheduled ADDM

> to monitor the performance and compared the results

> for both the database during the batch job

>

So was this an across the board benefit in CPU reduction, or one that you saw more on particular queries than others? What

sort of operations apeared to benefit most?

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 9, 2008 8:28 PM in response to: Charles Hooper
Reply

Excellent work Greg and Charles.

I will be on the road for the next couple of days but if you can package your setup and test scripts I have an 11gR1 RAC

cluster in the lab and I would like to run them with the addition of cache fusion. Thanks.

Nick

Naughty

Posts: 296

Registered: 5/3/07

Re: Larger vs. Small data block

Posted: Jun 10, 2008 1:45 AM in response to: user619401
Reply

nice

Howardjr

Posts: 11

Registered: 6/7/07

Re: Larger vs. Small data block

Posted: Jun 10, 2008 2:54 AM in response to:
Reply

I first learned it fro Oracle University in the early 1990's,

Er, no you didn't. Oracle University didn't even exist until the late 1990s. Before they aggrandised that title to themselves,

they were merely "Oracle Education". I remember the change coming in to Australia in, I think, 2000, possibly 2001... and

being mightily puzzled, since it's illegal to call yourself a university in Australia unless you've been granted a charter to

do so (which OU certainly hadn't at that time and probably still hasn't). But I digress...

Multiple block sizes weren't introduced to Oracle's RDBMS until version 9i, and that wasn't taught by OU until 2001. So again,

the "early 1990s" timeframe is just plain wrong.

BTW, it was presented as fact by OU, not theory

Er, no it wasn't. At least, not in the sense you wish to imply. It was mentioned in the context of transportable tablespaces

only. In Performance Tuning, there was a reference to the difficulty of coming up with one 'correct' blocksize when confronted

with competing OLTP/OLAP-DW demands (the usual stuff about big blocks are good for full table scans, small blocks good for

minimising contention). Nothing on that set of pages, however, ever suggested you should try to square the circle by combining

multiple block sizes in one database.

It would be intersting to see what it says.

I thought you just said you knew what the OU material said?! Perhaps just a momentary loss of concentration on your part,

then?

OU has details in the official courseware, telling students how to choose the "best" blocksize for their database

You have hit the nail on the head. 'How to choose THE best blocksize'. That would be "blocksize" singular, not "blocksizes"

plural. No OU documentation published from 8.0 to 10.2 days ever recommended the use of multiple block sizes in the one

database.

David, please note that the differences in performance with different blocksizes is presented on MetaLink, not as theory, but

as fact:

I don't think anyone would claim that there was NOT a difference in performance, would they? What people are arguing with you

about is a completely different proposition: that it makes sense to use multiple block sizes in the one database. You claim,

'it's OK, because TPC benchmarks do it'. Most others would, I think, claim that what TPC choose to do is irrelevant for your

much-vaunted "real world computing experience".

marcinp1

Posts: 3

Registered: 3/1/01

Re: Larger vs. Small data block

Posted: Jun 10, 2008 3:23 AM in response to: Charles Hooper
Reply

Hi,

I really don't understand why all examples are using index full scan ?

What about index range scan ? I made some test and in my test

if you have different block in data and index tablespace response time

is a little bit worse or equal but never was better.

You can see my test results on this webpage http://oracleprof.blogspot.com/

regards,

Marcin Przepiorowski

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 10, 2008 6:21 AM in response to: marcinp1
Reply

> I really don't understand why all examples are using

> index full scan ?

> What about index range scan ? I made some test and in

> my test

> if you have different block in data and index

> tablespace response time

> is a little bit worse or equal but never was better.

>

> You can see my test results on this webpage

> http://oracleprof.blogspot.com/

>

> regards,

> Marcin Przepiorowski

What I attempted to do is to create as many possible access paths as possible with a limited and reproducible data set, while

keeping as little of the previously read index and table blocks in memory to force physical reads (as if the data set were too

large to fit into and remain in the buffer cache).

It takes less time to fetch a random 8KB block from main system memory (RAM) than it does to fetch a random 16KB block from

main memory (RAM) - there is a certain CPU clock cycle latency with each main memory access in addition to the number of

memory clock cycles required to push the data bytes back to the CPU. I would suspect that index range scans or unique scans

might tip the balance toward the 8KB block size, especially if only a small number of rows are needed from each index block.

The same might be true also if two tables are joined together using indexed access paths.

Random index access, as well as random index update performance might be worth exploring.

There were a couple other problems/limitations that I had with the test setup and the scripts that I constructed, and those

problems were noticed after the first full set of test runs (tests 1, 2, and 3). However, I kept the test scripts unchanged

through the seven full sets of test runs to limit the number of changed variables between each set of test run to just one

changed variable. The majority of the problems/limitations that I found are listed here:

http://forums.oracle.com/forums/click.jspa?searchID=10228172&messageID=2575446

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Re: Larger vs. Small data block

Posted: Jun 10, 2008 6:41 AM in response to: Niall Litchfield
Reply

SeanMacGC

Posts: 7

Registered: 10/30/06

Re: Larger vs. Small data block

Posted: Jun 10, 2008 6:53 AM in response to:
Reply

>I have the same experience when I "have a feeling" about the cause of a problem. I can't put my finger on it, but I'm often

correct

How scary is that!

What happens when you're not correct, what happens when your "well-quantified decision rules" are rendered worse than useless

by the latest release or patch of the Oracle DBMS, what happens when your "human intuition" excels with Oracle 10g but bombs

with Oracle 11g?

What are the scientific steps that you undertake to shine a light on the reason of your failed intuition? For, as you

acknowledge herein, if you can't quite put your finger on it, you're fated to repeat it, ad infinitum...for no great profit at

best, and disaster at worst.

Re: Larger vs. Small data block

Posted: Jun 10, 2008 7:11 AM in response to: Howardjr
Reply

Re: Larger vs. Small data block

Posted: Jun 10, 2008 7:21 AM in response to: SeanMacGC
Reply

Re: Larger vs. Small data block

Posted: Jun 10, 2008 7:29 AM in response to: sp009
Reply

SeanMacGC

Posts: 7

Registered: 10/30/06

Re: Larger vs. Small data block

Posted: Jun 10, 2008 8:14 AM in response to:
Reply

>That's absolutely untrue, published by a semi-anonymous self-proclaimed expert who goes to great >pains to hide his work

experience and credentials. It's like your "fellow" Australian, Howar5d J. Rogers >noted, when he called Jonathan Lewis an

"idiot":

>http://dizwell.com/2008/06/07/go-on-try-it/

Check that again, you'll find Howard was calling himself an idiot. Tut, tut.

!

Re: Larger vs. Small data block

Posted: Jun 10, 2008 8:19 AM in response to: SeanMacGC
Reply

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 10, 2008 10:10 AM in response to: Charles Hooper
Reply

Charles,

Since you have done so much extensive testing, do you think higher block size

benefits for certain applications? or do you ever consider creating database with

higher block size or an OLAP or DSS environment?

Regards,

sp009

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 10, 2008 10:26 AM in response to:
Reply

> >> Check that again, you'll find Howard was calling himself an idiot.

>

> Well, the link "you'll get some idiot" pointed to a Lewis web page

>

Of course, many people would be inclined to follow the link and read the article rather than using their intuition to guess

what might be at the other end - especially if they were planning to use it in a discussion.

Typical approach really.

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

"The greatest enemy of knowledge is not ignorance,

it is the illusion of knowledge." (Stephen Hawking)

David

Aldridge

Posts: 1,022

From: XM Satellite Radio,

Washington DC

Registered: 10/5/98

Re: Larger vs. Small data block

Posted: Jun 10, 2008 11:26 AM in response to:
Reply

> Today, we know the top CIO's and CEO's of large

> corporations can earn hundreds of millions of

> dollars a year, largely for their human intuition.

The more interesting fact is that even when they fail miserably they still get the big money.

http://blogs.usatoday.com/oped/2007/01/our_view_on_ceo.html

Apparantly it's not possible to judge a person's competence based on their success in business.

Hans

Forbrich

Posts: 7,483

From: AB, Canada

Registered: 3/13/99

Re: Larger vs. Small data block

Posted: Jun 10, 2008 11:44 AM in response to: David Aldridge
Reply

<off topic>

> Apparantly it's not possible to judge a person's

> competence based on their success in business.

Not restricted to people.

Popular does not necessarily imply Good. Popular however often implies successful. I can think of examples in industry. For

example, we are all familiar with a very successful software company as well as a very successful fast food company,

It never fails to amaze me how advertising can create popularity and create the appearance of 'good'.

</off topic>

Re: Larger vs. Small data block

Posted: Jun 10, 2008 3:20 PM in response to: David Aldridge
Reply

Re: Larger vs. Small data block

Posted: Jun 10, 2008 3:45 PM in response to: Jonathan Lewis
Reply

Niall

Litchfield

Posts: 301

From: Hampshire UK

Registered: 7/4/99

Re: Larger vs. Small data block

Posted: Jun 10, 2008 4:36 PM in response to:
Reply

And so we descend to an ad-hominem attack. Again.

> 1 -Envy - Start with the attitude that you

> "deserve" more because you think that you are smarter

> than others.

I'm quite surprised that an author of articles about being careful what you say on the net should choose to ascribe negative

motivations to others, whose state of mind he cannot by definition know.

>

> 2 - Rigid mindset - Adopt the mantra "question

> authority" and the narrow-minded approach that

> anything that cannot be proven with rules is

> nonsense. Kinda like a hippie.

the approach is that anything is untestable and unproven, is well - unproven and not reliable.

> 3 - Hide your true credentials and experience

> Even though you apparently never studied science and

> know almost nothing about scientific research,

> self-appoint yourself as an "Oracle Scientist".

that dates back to the OakTable description

" But, they do have one special trait in common. They strive to adopt a scientific approach to their work - so they don't make

claims about Oracle's performance unless they can construct a reproducible test case; they don't believe any claims about

Oracle's performance unless the claim is backed by a well-argued proof."

we're quite happy to stand by that, doesn't say we're physics PhDs, just what counts as evidence, what doesn't and what our

basic approach is.

>

> 4 - Deceive your readers with nonsense.

> Declare that science says that you can "prove" any

> concept wrong, by showing any negative test case.

Karl Popper says that. You'll find most scientists (of the white coats and labs variety) would agree that reproducible test

cases that consistently negate predictions or assertions do disprove the theory that made those predictions.

> 5 - Debunk! - Attack anyone who dares not to

> "respect your authority". Just like Cartman:

>

> http://www.poster.net/south-park/south-park-you-will-r

> espect-my-authority-3700212.jpg

>

>

> 5 - Confuse people - Use this slight-of-hand

> trick to have extremely useful MetaLink notes removed

> and "prove" that almost every Oracle tuning concept

> is all wrong! Shame on you.

er Jonathan removed them, or Oracle?

> I see that your most recent attempt to "debunk" me

> blew-up in your face again. At least we all know it

> now, that you know very little about the scientific

> method

>

> http://jonathanlewis.wordpress.com/2008/06/08/scientif

> ic-method/

>

> Can you admit it now?

er no, that page doesn't show anything of the sort - other people do follow links by the way.

> Seriously Jonathan, keep an open mind! Everyone here

> can teach us something . . . Just cause something

> can't be proven does not mean that it's not true.

nor does it mean it's false - it does mean that promoting it as fact is rather irresponsible.

Niall

Re: Larger vs. Small data block

Posted: Jun 10, 2008 4:51 PM in response to: Niall Litchfield
Reply

sybrandb

Posts: 4,042

From: Amsterdam, Netherlands

Registered: 8/4/98

Re: Larger vs. Small data block

Posted: Jun 10, 2008 5:04 PM in response to:
Reply

I don't think you ever reported anything except for gross generalizations.

You and your experts always make general claims, which are always defeated by testcases demonstrating the contrary.

Could you consider, please, what this means for your credibility?

If you would only post 1 (ONE) testcase supporting your claims, wouldn't that make a whole lot of difference?

Wouldn't that also be a more professional contribution to this debate compared to your ongoing attacks on Jonathan Lewis?

And finally, if you state 'The doc's suck', why don't you file documentation bugs?

Everyone has the right to do so!

--

Sybrand Bakker

Senior Oracle DBA

Tubby

Posts: 917

From: Vancouver

Registered: 10/1/01

Re: Larger vs. Small data block

Posted: Jun 10, 2008 6:06 PM in response to:
Reply

> Unfortunately, this "prove it" junk has become beyond ridiculous.

I couldn't agree more.

On a completely unrelated topic, i just finished traveling back in time, where i stopped Jonathan Lewis from assassinating

your great great grandfather, thereby securing your existence in this reality.

If you'd like, i can give you my pal pay account where you can properly thank me.

Howardjr

Posts: 11

Registered: 6/7/07

Re: Larger vs. Small data block

Posted: Jun 10, 2008 6:30 PM in response to:
Reply

No, I'm not Anon. The name is there in black and white.

Who cares what it was called?

Good point. I mean, let's not worry too much about mere facts and details, eh? Let's just paint with a broad brush and get the

facts and details wrong, shall we?

Oracle did not have transportable tablespaces in the early 1990's

Of course they didn't. Which is how come I know your claim that you read about multiple block sizes in Oracle University

documentation "in the early 1990s" is a crock of miniature horse manure.

For systems with hybrid I/O, do multiple blocksizes make sense? You Bet!

Er, no, actually, I don't bet. I realise you do, and you also don't care about facts and details, but if you have a hybrid

system, you have a compromise on your hands and using multiple block sizes is not the answer. Personally, instead of betting,

I'd use one block size that maximised my I/O throughput and then use PCTFREE where necessary to decrease the effective block

size for those tables where the large physical block size was causing contention problems.

I've deployed multiple blocksizes in mainframes for decades, many years before Oracle became popular, and it's a well-proven

technique.

The fact you did this years before Oracle became popular makes this assertion completely and utterly irrelevant for a

discussion on an Oracle forum about Oracle databases in 2008.

I got my pilot's license for single engine aircraft in 1992. It makes me highly unqualified to take the controls of a Boeing

787 today, I think.

Since you seem to find find the Oracle docs credible, note this:...

The piece of Oracle documentation you link to and go on to quote is all about using separate RECYCLE and KEEP caches to keep

buffer access separated and distinct. It has absolutely nothing to say about the use of multiple block sizes in the one

database. The fact that it is silent on the subject is significant, I think: it's a dumb thing to do and you don't have any

evidence to the contrary.

Except, of course, your tired old line about TPC benchmarks. At this point, I merely repeat what I replied to you several

months ago: the TPC benchmarks also run the database in noarchivelog mode and with redo generation switched off. Do you

recommend those practices to your clients, too? No?? Why ever not??? Surely, if it's good enough for TPC, it's good enough for

your clients??? No???? Why then, perhaps you recognise after all that TPC setups are carefully calibrated to get the best

scores possible in an artifical benchmarking contest. They do NOT represent best practice for proper production databases that

need supporting and long-term management. IMHO, you're preaching the same bulldust about multiple blocksizes as you have on

every other technical Oracle topic for the past 8 years.

Howardjr

Posts: 11

Registered: 6/7/07

Re: Larger vs. Small data block

Posted: Jun 10, 2008 6:34 PM in response to:
Reply

It's like your "fellow" Australian, Howar5d J. Rogers noted, when he called Jonathan Lewis an "idiot":

Yeah, just another minor fact and detail you got 100% wrong, I see.

Great researching skills, there. Not.

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 10, 2008 6:49 PM in response to:
Reply

>

> I'm swamped this week, but I can ask a couple of experts to pop-in and report on what they have witnessed on my systems (if

empirical observation counts).

>

Just checking to see if this will happen. In addition to observation and interpretation, It would be advantageous to see some

AWR or Statspack of before and after. This way there are metrics to coincide with the observations. If you need to clean them

WRT an NDA, please do. As long as there is no identifiable information, I’ve found it’s never a problem. I’ve found where

there is a will, there is a way. We ask customers to use data every year for OOW.

>

> These are ALL 100% REPRODUCEABLE benchmarks using non-standard blocksizes, yet the "Oracle Scientists" don't bother to

validate them, even though they were officially sponsored by Oracle Corporation. . .

>

I do not believe anyone is arguing they are not reproducible, etc . TPC-C does use multiple block sizes as well as multiple

cache pools for a reason: performance. In fact, they were specifically invented for TPC-C:

http://www.google.com/patents?id=3vELAAAAEBAJ

But understand, when a benchmark has been tuned as well as TPC-C, people look to invent new ways to squeak out performance. In

speaking with one of the inventors, he mentioned to me that it might yield maybe a 5% gain, but in the next sentence, he told

me that he wouldn't expect even that much from a real-world workload. This is because TPC-C only has 9 tables and 5

transactions and is 100% understood, predictable and run in a controlled environment. TPC-C also runs its db server at near

100% CPU utilization. Oh, and they also slow down the transactions, just so they make the time limits (I believe IBM was the

first to come up with that one), to allow for more throughput. Would you recommend that to a customer as well? My point here

is that while competitive benchmarks use niche features, and legal “tricks”, the practicality of it is probably far less for

the rest of the world. To put it another way: one bad execution plan would wipe that 5% and probably another 15% along the

way. So when it comes to chasing block sizes or chasing good plans or good design, I would recommend the focus be on the

latter because of the amount of impact. Chase the big fish. But then again, to each their own.

My biggest problem is that some seem to be positioning block size as a secret weapon to gain performance, of which it is

certainly not. Not at least on its own, meaning if more than a few percent performance is gained, other variables have also

likely changed and the gain is not 100% attributable to block size. Some consultants seem to like to play the “I know

something you don’t know and I’m not telling/showing” game and brag how many “evil performance dragons [one has] slain using

magical silver bullets”[1]. I have no time for those types. And I have cleaned up after enough of them. They “fix” today’s

symptoms only to have the problem come back 3x worse in months. Now those who take their experience and share, explain and

demonstrate and are interested in having others learn, I salute them. They advance the knowledge of others while building a

reputation and many of those who benefit may never give them a dime in consultant fees (maybe some in books or seminars, etc).

There is certainly a reason that Tom Kyte presentations require two 1000+ capacity rooms for the same session at OOW.

>

> Right, but you don't accept ANY real-world reports, right?

> Me and my experts will continue to report what we see, and if you want to condemn us as idiots or liars because we won't

"prove it", well, that's your right

>

There isn't anyone that has taking as far as calling people liars. Let's spare the drama and stick to the technical facts.

It's perfectly reasonable to ask for proof. Would you believe something on faith alone? Are you not the one asking for

credentials? ‘Nuff said.

So I propose that the whinging stop and some technical evidence be placed on the table. Until then, I think we are pretty much

done. Although I’m sure you will need the last word and I will let you have it…

--

Regards,

Greg Rahn

http://structureddata.org

[1] Billy Verreynne http://forums.oracle.com/forums/click.jspa?searchID=10238423&messageID=2563461

Billy

Verreynne

Posts: 6,628

Registered: 5/27/99

Re: Larger vs. Small data block

Posted: Jun 11, 2008 1:12 AM in response to: Greg Rahn
Reply

> There isn't anyone that has taking as far as calling people liars. Let's spare the drama and

> stick to the technical facts. It's perfectly reasonable to ask for proof. Would you believe

> something on faith alone?

Faith-based Oracle database healing.... Hmmm... sounds very familiar. But you would need a TV evangelist type for that.. er..

right.. How could I have missed that?

;-)

Faust

Posts: 797

From: Middle Europe

Registered: 1/1/07

Re: Larger vs. Small data block

Posted: Jun 11, 2008 6:03 AM in response to:
Reply

--

Message was edited by:

Faust

Re: Larger vs. Small data block

Posted: Jun 11, 2008 6:31 AM in response to: sybrandb
Reply

Re: Larger vs. Small data block

Posted: Jun 11, 2008 6:37 AM in response to: Faust
Reply

Re: Larger vs. Small data block

Posted: Jun 11, 2008 6:47 AM in response to: Greg Rahn
Reply

Niall

Litchfield

Posts: 301

From: Hampshire UK

Registered: 7/4/99

Re: Larger vs. Small data block

Posted: Jun 11, 2008 6:56 AM in response to:
Reply

> >> what counts as evidence, what doesn't and what our

> basic approach is.

>

> Right, but you don't accept ANY real-world reports,

> right? Whether it's because the corporation has no

> interest in proving anything to you, or because it's

> none of your business, you close yourself to the

> entire universe of production systems!

I don't believe so no, production systems are difficult sources for reproducible test cases though - since no-one else will

have my production system. But a well designed test does not become invalid because it is run on a reproducible environment,

unless you happen to believe that Oracle magically behaves differently in a test environment.

> **

> **************************************

>

> >> and what our basic approach is.

>

> "Our"? You are one of those "Woodies"? Sorry, I did

> not know that I was talking to an Oracle Scientist,

> sorry.

The chap from xxxxxxxxxxx xxxxxxxxxxxx who was checking out my profile on LinkedIn might have noticed, and my names been on

the list at the OakTable website for a while now.

> Me, I'm thinking about becoming a MS-Word scientist .

>

oh a Woody? http://wopr.com

> Unfortunately, this "prove it" junk has become beyond

> ridiculous. In case you "Woodies" don't know, in 99%

> of all shops, you can be fired for disclosing "ANY"

> data from a production database.

Someone really ought to tell Oracle that, what with the RDA/SCM and all the rest of it!

> Me and my experts will continue to report what we

> see, and if you want to condenm us as idiots or liars

> because we won't "prove it", well, that's your right

Not at all, if you want to engage with the contradictory test cases, explaining what's wrong or inappropriate in them and even

better suggesting a better experiment - maybe even supplying your own then the entire community would benefit. That's surely

more positive than xxx xxxxxxxx says this,Tom Kyte says that and Uncle Joe Cobbly doesn't believe either of them.

Niall

seenshoo

Posts: 285

From: Maryland, USA

Registered: 3/12/01

Re: Larger vs. Small data block

Posted: Jun 11, 2008 7:00 AM in response to:
Reply

> Why would I want to? Like Oracle Press, I have a

> vested interest in keeping the the quality of the

> Oracle docs excatly where it is!.

So you admit that some oracle documentation is bad. So when someone like Jonathan lewis try to correct it, isn't that good?

Doesn't that say Jonathan is trying to help oracle community with his knowledge and you are just not? Well, actually you do

seem to imply you are interested in cashing in from oracle document errors. As a DBA, your above line concerns me. Where and

whom would you think next time DBA like me would run to? You or Jonathan?

It was also very bad that you had to start name calling on JL few post ahead. Seriously, not very nice. Also please refrain

from bringing 'oracle scientist' theory and argument in every other post and thread. In my opinion and experience, Computers

is one field where you show the result and you are God. It doesn't matter if you are 8 year old or 80 year old. Degrees and

Ivy leagues and expensive suits doesn't matter as long as you solve the problem at hand. You know at heart that Jonathan is

genius. Admit it and why drag this topic further. More you hurl accusations, more you lower yourself.

This post/thread has been been educational with so many test cases and inputs from so many professionals. Hope this does not

get deleted due to some post going personal.

Regards,

Seenshoo.

Faust Re: Larger vs. Small data block

Posted: Jun 11, 2008 7:23 AM in response to:
Reply

Posts: 797

From: Middle Europe

Registered: 1/1/07

> Can you provide me with the e-mail?

Well, I can try to find that email - that was in January or February - I must check it...

> The STATSPACK analyzer has been used by tens of

> thousands of people, and I've never heard this

> complaint, not once.

As I posted, I didn't come to that level, after first response I was not interested in further experience of the service.

> You have made a very serious accusation here, and you

> had better be prepared to back it up.

Well, just posted what I experienced then.

Everybody, if interested, can register and see what will get.

Cheers!

Steve

Karam

Posts: 126

From: Virginia Beach, VA

Registered: 9/14/05

Re: Larger vs. Small data block

Posted: Jun 11, 2008 7:53 AM in response to: Faust
Reply

Faust,

I signed up for StatspackAnalyzer.com to check out your claim. I tried it three times, once with just my information and no

"send me extra information" checkboxes checked, once with one of them checked, and once with both checked. Each time I

received an email with no attachments at all.

The first test was sent to my mailserver which I own, and it passed through an up-to-date Spamassassin/Clam filter to Outlook

2007 on my computer running Avast! Anti-Virus with fully up-to-date definitions.

Next it was sent twice to my enterprise IMAP account through GMail, which has outstanding virus/spam protection. GMail also

delivered it to my inbox and reported no issues.

If you have proof that your email from StatspackAnalyzer.com contained viruses I'd love to see it, but I can't find any

evidence that backs up your claim.

Re: Larger vs. Small data block

Posted: Jun 11, 2008 8:24 AM in response to: Niall Litchfield
Reply

Faust

Posts: 797

From: Middle Europe

Registered: 1/1/07

Re: Larger vs. Small data block

Posted: Jun 11, 2008 8:27 AM in response to: Steve Karam
Reply

> If you have proof that your email from

> StatspackAnalyzer.com contained viruses I'd love to

> see it, but I can't find any evidence that backs up

> your claim.

Very nice that is so :-)

This evening when I'm again in my office, I will try (as I already posted) to find that email.

And at least, I didn't want to claim anybody, but to share my experience - if somebody see my post as claim that means that

person see this Forum not as community, but as marketplace.

Any customer around??

;-)

Faust

Re: Larger vs. Small data block

Posted: Jun 11, 2008 8:37 AM in response to: Faust
Reply

Re: Larger vs. Small data block

Posted: Jun 11, 2008 8:43 AM in response to: Faust
Reply

SeanMacGC

Posts: 7

Registered: 10/30/06

Re: Larger vs. Small data block

Posted: Jun 11, 2008 8:48 AM in response to:
Reply

>> unless you happen to believe that Oracle magically behaves differently in a test environment.

>Yes, I believe that, absolutely! Try it on any of the millions of other possible combinations, and the performance results

WILL be different.

Really? You believe that performance results differ by magic?

How utterly reassuring!

David

Aldridge

Posts: 1,022

From: XM Satellite Radio,

Washington DC

Registered: 10/5/98

Re: Larger vs. Small data block

Posted: Jun 11, 2008 8:49 AM in response to:
Reply

> >> But a well designed test does not become invalid

> because it is run on a reproducible environment

>

> Yes, but it's valid ONLY for a single user

> environment, only on that specific server, disks,

> release, patch level, MBRC, and so on, ad infinitum.

>

If that's true, and I think it is only to a limited extent, then it emphasises to me the need for test cases that can be

executed on multiple releases, multiple MBRC, multiple servers etc.. Without that, you would have no way of knowing whether

advice was valid for your circumstances.

Faust

Posts: 797

From: Middle Europe

Registered: 1/1/07

Re: Larger vs. Small data block

Posted: Jun 11, 2008 8:56 AM in response to:
Reply

--

Message was edited by:

Faust

Hans

Forbrich

Posts: 7,483

From: AB, Canada

Registered: 3/13/99

Re: Larger vs. Small data block

Posted: Jun 11, 2008 9:00 AM in response to: Greg Rahn
Reply

Interesting thread. Especially now that SPG is effectively being accused of not understanding real world performance.

Musings - none of which require a response:

1) Oracle IS also a real world company, They have their own business systems that provide financial info, payroll for +50K

employees, mail services for those same employees. If any organization has an extreme real world load, it's Oracle;

2) I wonder which professional consulting companies or individual consultants have such a strong reputation that Oracle has

invited them in to look at the performance for those internal Oracle apps. (Probably can't tell due to some NDA.)

3) I wonder whether RWPG is asked to look at, or work on, the performance of those same apps.

4) I wonder whether Oracle uses multiple block sizes in those apps for any reason other than transportable tablespace.

5) With that kind of load available, and with the 11G Real App Testing feature and the data masking capability, I wonder

whether Oracle did/will test against a sanitized real world data set based on that real world load.

Hans

Forbrich

Posts: 7,483

From: AB, Canada

Registered: 3/13/99

Re: Larger vs. Small data block

Posted: Jun 11, 2008 9:01 AM in response to:
Reply

> You published, as a fact, that Texas Memory Systems

> is engaging in unethical behavior.

The way I read it, he published that he received a problematic email from that source, not that the source sent him one.

Re: Larger vs. Small data block

Posted: Jun 11, 2008 9:24 AM in response to: Greg Rahn
Reply

Re: Larger vs. Small data block

Posted: Jun 11, 2008 9:30 AM in response to: David Aldridge
Reply

Re: Larger vs. Small data block

Posted: Jun 11, 2008 9:36 AM in response to: Faust
Reply

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 11, 2008 9:50 AM in response to:
Reply

With respect to your statement:

"What about the fact that many RAC shops use a 2k blocksize to improve throughput performance?"

The issue with RAC relates to cache fusion with the memory interconnect.

This solution you make reference to is limiting the number of blocks being passed between instances.

One way to do that is to limit the number of records per block which can be accomplished by a variety of techniques of which,

a smaller block size, is only one of them. Any technique that minimizes block sharing will have a positive affect.

That said ... a better solution is to fix the application's design or make better use of a restricting node access using

services.

Re: Larger vs. Small data block

Posted: Jun 11, 2008 9:59 AM in response to: damorgan
Reply

Steve

Karam

Posts: 126

From: Virginia Beach, VA

Registered: 9/14/05

Re: Larger vs. Small data block

Posted: Jun 11, 2008 10:14 AM in response to: damorgan
Reply

damorgan said:

> That said ... a better solution is to fix the

> application's design or make better use of a

> restricting node access using services.

Just a couple notes to avoid generalities:

While I would agree that minimizing block touches via application tuning is a great idea, most of the time the allowed

concurrency and the amount of data retrieved are business rule constants and therefore cannot be changed. So while we can

definitely tune queries to minimize block touches, it still doesn't help us when large result sets are required (e.g. DSS), or

when many people across many nodes need to work with data on the same block (e.g. OLTP).

I too like the idea of restricting node access with services, but I would add that you have to be careful not to put all your

eggs into one basket. If one node is responsible for all of your data loads, for instance, that node is now an increased risk.

If it crashes, the GRD will be frozen until a surviving instance recovers all of the crashed node's recovery data, which could

take longer if it has been performing the bulk of the DML work across the cluster.

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 11, 2008 10:28 AM in response to:
Reply

>> But a well designed test does not become invalid because it is run on a reproducible environment

Yes, but it's valid ONLY for a single user environment, only on that specific server, disks,

release, patch level, MBRC, and so on, ad infinitum.

Well Said!. Some how i was trying to express the same in my previous posts

in the same thread. I wonder how many DBA's listed here are "Scientific DBA"

or with some real world experience with corporate data. Well organized test case

can always be reproducible in Lab. This is true not only with Oracle, but with

any modern scientific experiments. Scientific Experts where able to simulate

some of the most complex experiments like nuclear fusion or earth rotation

or future hurricane prediction etc.. in their Lab. But does that mean, you blindly

depend on those and apply in the read time scenario? No, at least i don't think so.

What i wonder is, how many of those DBA listed here ever had taken a chance

to change their DSS application data block size and compare the Performance,

instead of testing with single user environment in their Lab and sleep on the result.

I think most of them stick with "A != B since A is not equal to B"

sp009

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 11, 2008 10:28 AM in response to:
Reply

>

> Greg, I've been consulting for decades, and I've

> NEVER has a client agree to the expense of

> re-designing their application. Not one!

>

> Is your experience different?

>

Mine is.

Company X (who cannot be named for reasons of NDA) has a project which had been running for 9 months when a new manager got

worried about what was going on and called me in.

I got on site 9:00 am, and explained to IT director at lunchtime why it wasn't going to work and how he had to redesign the

system. He thought about it for 5 minutes, then gave me a week to build a proof of concept. The week after that they started

the re-design.

Reading your resume, by the way, it looks like you were what the British would call a contract DBA until 1999, and turned

consultant in 2000. Maybe that's just a terminology thing - but I'd call that just over 8 years, not decades.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

David

Aldridge

Posts: 1,022

From: XM Satellite Radio,

Washington DC

Registered: 10/5/98

Re: Larger vs. Small data block

Posted: Jun 11, 2008 10:36 AM in response to:
Reply

> >> it emphasises to me the need for test cases that

> can be executed on multiple releases, multiple MBRC,

> multiple servers etc..

>

> And for real-world workloads! If these "test cases"

> could be run in a multi-user mode and become

> respresentative of a real world system, then yes, a

> statistically valid sample size would indeed provide

> some valid evidence.

A real-world workload eventually, but you have to establish the basic behaviour first. Obviously you're going to monitor the

impact of a change to the MBRC (for example) on your production workload, but you need those test cases prior to that to see

the effect on query optimisation. When you do monitor for a change on the real world workload you look at AWR reports to see

what went better and what went worse.

>

> **

> **

>

> >> Without that, you would have no way of knowing

> whether advice was valid for your circumstances.

>

> Excellent comment. It's only by generalizing the

> tests that value can be gained.

What do you mean by generalising the test?

Re: Larger vs. Small data block

Posted: Jun 11, 2008 10:55 AM in response to: David Aldridge
Reply

Re: Larger vs. Small data block

Posted: Jun 11, 2008 11:05 AM in response to: sp009
Reply

chris_c

Posts: 160

Registered: 10/17/06

Re: Larger vs. Small data block

Posted: Jun 11, 2008 11:07 AM in response to:
Reply

>>If I wanted to, I'm sure that I could concoct contrived test cases with offbeat parms to disprove practically every tip on

MetaLink. . . .

Someone may have beaten you to it, both notes 77574.1 and 122008.1 appear to have been removed from metalink.

-- new note on index rebuilds (still a draft) 182699.1

Message was edited by:

chris_c

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 11, 2008 11:14 AM in response to:
Reply

(Snip)

> BTW, I agree with Greg that MBRC is also a factor,

> but for surprizing reasons.

>

> What I found on a database just this week, is that

> ditching the 10.2 MBRC=0 (automatic MBRC tuning) and

> using manual optimization, my client saw a 22%

> throughput improvement.

>

> But even stranger, this is a well-indexed OLTP app

> that does not do many scattered reads!

>

> The conventional wisdon suggests the multi-block read

> size is only for full-scan operations, but I found

> that optimizing MBRC is also important for optimizing

> inserts on reverse key indexes, and possible index

> range scans . . .

(Snip)

You stated:

"What I found on a database just this week, is that ditching the 10.2 MBRC=0 (automatic MBRC tuning) and using manual

optimization, my client saw a 22%

throughput improvement."

Are you stating that your client disabled automatic tuning of the multi_block_read_count by setting the parameter to 0, and

you did not tell the client that doing so actually sets the parameter's value to 1? Or, is this the correct way to disable

automatic tuning of the multi_block_read_count?

Demonstration:

SQL> SHOW PARAMETER DB_FILE_MULTIBLOCK_READ_COUNT

NAME TYPE VALUE

------------------------------------ ----------- -----

db_file_multiblock_read_count integer 128

SQL> ALTER SYSTEM SET DB_FILE_MULTIBLOCK_READ_COUNT=0 SCOPE=SPFILE;

System altered.

(Bounce Database Instance)

SQL> SHOW PARAMETER DB_FILE_MULTIBLOCK_READ_COUNT

NAME TYPE VALUE

------------------------------------ ----------- -----

db_file_multiblock_read_count integer 1

SQL> ALTER SYSTEM RESET DB_FILE_MULTIBLOCK_READ_COUNT SCOPE=SPFILE SID='*';

System altered.

(Bounce Database Instance)

SQL> SHOW PARAMETER DB_FILE_MULTIBLOCK_READ_COUNT

NAME TYPE VALUE

------------------------------------ ----------- -----

db_file_multiblock_read_count integer 128

Your client only saw a 22% thoughput performance by allowing more than one block to be read at a time? Maybe I just

misunderstood what you stated?

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

SQL> SHOW PARAMETER DB_FILE_MULTIBLOCK_READ_COUNT was mistakenly clipped from the SQL*Plus output just before the line showed

that the value was set to 1.

Message was edited by:

Charles Hooper

user641491

Posts: 1

Registered: 6/11/08

Re: Larger vs. Small data block

Posted: Jun 11, 2008 11:14 AM in response to: Faust
Reply

Faust, (and others who have signed up for StatspackAnalyzer.com):

The initial email sent with the URL to login to the StatspackAnalyzer.com tool has included a graphical tracking bit. This bit

tells us one thing... that the email has been opened. It is our best way to verify that there is not something wrong with our

email system and also to do a rough check to see if people are actually opening the emails we send out with the login. Most

email systems will warn you anytime there are graphics/tracking bits in an email and give the user the option of opening the

graphics. For example, I am aware that companies that send emails almost always use tracking bits. Sometimes this tracking is

passive and sometimes the companies use it in ways that are disconcerting to me (as in they might email me and say I saw that

you opened our email). If I want them to track my "email open", I will click ok to receive the graphics. If I do not want them

to track my "email open", I will not open the graphics.

In any case, from our experience in the last year we can safely conclude that most people are opening these emails. Since we

do not do anything else substantial with this tracking bit, we are working to remove this graphical tracking bit so that it

will not cause concern to future StatspackAnalyzer.com users.

Finally, I encourage you to post concerns and rules improvement ideas on our StatspackAnalyzer.com forums. These forums list

every rule including variables considered and recommendations made. We are hoping that this results in a lively dialog and

that we can continually improve the tool.

And yes, as people frequently mention, the tool does recommend using solid state disks. I encourage you to ask any Oracle

customers who contact us to discuss the fit of SSD with their application and you will see that we work closely with these

customers to determine if the application actually needs our product or not. In support of this, we have a fleet of evaluation

units that we send out for people to do free tests of our equipment. I can tell you that sometimes we help and sometimes we

don't. Anyone in the Oracle community can tell you there are no silver bullets. Having said that, it is a nice bullet to have

in your arsenal should you encounter a real I/O bottleneck.

We hope you will work with us to continue to improve this free tool.

Woody Hutsell

EVP

Texas Memory Systems

woody.h@ramsan.com

stevencallan

Posts: 1,409

Registered: 5/17/02

Re: Larger vs. Small data block

Posted: Jun 11, 2008 11:30 AM in response to: user641491
Reply

[diversion on]

Many email senders embed a 1x1 gif/image in an email, or more accurately, a link to a server/content provider such as akamai.

When you open the email, a request is sent to download the image. That request is then ricocheted to the sender. Another

"feature" is to embed a spinner which pings back and forth between you and the content provider. This is used to determine

(roughly) how long the email was open. Another technique is to embed a spinner behind a link. You may not have clicked the

link, but we know that your cursor was placed over it, so it is a rough indication that you may have been reading what was in

that region of the email (think of product/ad placement). Which links you click and how many times you click them are also

captured via ricochet.

[diversion off]

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 11, 2008 11:34 AM in response to: Hans Forbrich
Reply

2) I wonder which professional consulting companies or individual consultants have such a strong reputation that Oracle has

invited them in to look at the performance for those internal Oracle apps. (Probably can't tell due to some NDA.)

I don't believe any external people have observed an internal Oracle system.

3) I wonder whether RWPG is asked to look at, or work on, the performance of those same apps.

Yes. The RWPG is part of development, not consulting, (we are not for hire or bill) and we often times are involved in looking

at performance of internal databases, as well as the developers responsible for the problematic code area.

4) I wonder whether Oracle uses multiple block sizes in those apps for any reason other than transportable tablespace.

I believe that our internal applications use an 8k block.

5) With that kind of load available, and with the 11G Real App Testing feature and the data masking capability, I wonder

whether Oracle did/will test against a sanitized real world data set based on that real world load.

One of the things that the RWPG tries to do is to add as many meaningful external workloads to our test suite. Generally these

have come as a result of proof of concepts. I think there is a desire to try and gain some external workloads via the 11g RAT.

--

Regards,

Greg Rahn

http://structureddata.org

David

Aldridge

Posts: 1,022

From: XM Satellite Radio,

Washington DC

Registered: 10/5/98

Re: Larger vs. Small data block

Posted: Jun 11, 2008 11:41 AM in response to:
Reply

> The advice below was quite good, and it's sad to see

> MetaLink remove tips like this, especially when the

> person complaining claims to know the truth but does

> not replace them with anything better.

I think you'd better decide whether you want high quality Metalink notes and documentation or not -- I'm getting a mixed

message here ;)

It's up to Oracle support whether they want to rewrite the advice or remove it, of course. Obviously they agree with the

criticism if they do.

gintsp

Posts: 1,639

From: Latvia, Riga

Registered: 9/30/99

Re: Larger vs. Small data block

Posted: Jun 11, 2008 11:43 AM in response to: stevencallan
Reply

That's why I always read my emails as plain text so that red fonts size +3 and sh|t you mentioned doesn't work for me even in

outlook. At least I hope so...

And these embedded pictures become links and convert such emails to unreadable junk so I can easily press the del button

because of spam without any scruples.

Gints Plivna

http://www.gplivna.eu

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 11, 2008 11:49 AM in response to: Jonathan Lewis
Reply

> > Greg, I've been consulting for decades, and I've NEVER has a client agree to the expense of re-designing their

application. Not one!

> >

> > Is your experience different?

> >

>

> Mine is.

Mine is as well. Tweaking and fiddling with parameters and blocks may offer percentage gains. Design modifications generally

offer magnitude gains. Generally we are not talking complete redesign, but redesign of the problematic area.

--

Regards,

Greg Rahn

http://structureddata.org

Hans

Forbrich

Posts: 7,483

From: AB, Canada

Registered: 3/13/99

Re: Larger vs. Small data block

Posted: Jun 11, 2008 12:03 PM in response to: Greg Rahn
Reply

Thanks Greg.

> 3) I wonder whether RWPG is asked to look at, or

> work on, the performance of those same apps.

>

> Yes. The RWPG is part of development, not

> consulting, (we are not for hire or bill) and we

> often times are involved in looking at performance of

> internal databases, as well as the developers

> responsible for the problematic code area.

>

> 5) With that kind of load available, and with the
> 11G Real App Testing feature and the data masking

> capability, I wonder whether Oracle did/will test

> against a sanitized real world data set based on that

> real world load.

>

> One of the things that the RWPG tries to do is to add

> as many meaningful external workloads to our test

> suite. Generally these have come as a result of

> proof of concepts. I think there is a desire to try

> and gain some external workloads via the 11g RAT.

>

Which implies that you are actually using real world systems, and creating test cases that model specific aspects of the real

world so that you can determine individual influences. And probably verifying that the models and influences thereon are

actually valid in the real world.

Seems contradictory to some of the comments and implications alluded to by the representative of at least one popular

consulting company.

(Also seems like the purpose has not changed much since the SPG days.)

> 4) I wonder whether Oracle uses multiple block

> sizes in those apps for any reason other than

> transportable tablespace.

>

> I believe that our internal applications use an 8k block.

Any chance of getting that verified?

We all know that Larry, Charles and Jeff have limited patience with systems [performance]. If they are moderately satisfied

with the real-world performance of Oracle's internal real-world systems, and if those systems use 8K blocks (or ... if one

database uses only one block size), then I'd think that makes a significant statement in terms of this thread.

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 11, 2008 12:15 PM in response to: user641491
Reply

Woody,

> The initial email sent with the URL to login to the

> StatspackAnalyzer.com tool has included a graphical

> tracking bit. This bit tells us one thing... that

> the email has been opened. It is our best way to

> verify that there is not something wrong with our

> email system and also to do a rough check to see if

> people are actually opening the emails we send out

> with the login.

Thank you for this posting. Apart from re-assuring your potential users, it's also captured the theme of thread in a

microcosm.

a) Faust was correct in his observation that the email carried a trojan - but his degree of information (or interest) did not

extend far enough to discover that the trojan was a harmless graphical tracking bit.

b) Steve Karam was correct in his observation that when he did his testing there were no trojans, because he didn't see a

trojan. However, he may have failed to detect the "trojan" because he saw it, knew what it really was, and discounted it; or

he may simply not have noticed.

c) Both of them were wrong, and careful testing would have shown this. Both could have claimed (and did) that their

observations were valid because they were based on "empirical observations" of a "real-world system".

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Steve

Karam

Posts: 126

From: Virginia Beach, VA

Registered: 9/14/05

Re: Larger vs. Small data block

Posted: Jun 11, 2008 12:29 PM in response to: Jonathan Lewis
Reply

> b) Steve Karam was correct in his observation that

> when he did his testing there were no trojans,

> because he didn't see a trojan. However, he may have

> failed to detect the "trojan" because he saw it, knew

> what it really was, and discounted it; or he may

> simply not have noticed.

> c) Both of them were wrong, and careful testing would

> have shown this. Both could have claimed (and did)

> that their observations were valid because they were

> based on "empirical observations" of a "real-world

> system".

Except I never claimed that there were no trojans. Here are the statements I made.

Faust - TRUE

I signed up for StatspackAnalyzer.com to check out your claim - TRUE

I tried it three times - TRUE

Each time I received an email with no attachments at all. - TRUE

The first test was sent to my mailserver which I own, and it passed through an up-to-date Spamassassin/Clam filter to Outlook

2007 on my computer running Avast! Anti-Virus with fully up-to-date definitions. - TRUE

Next it was sent twice to my enterprise IMAP account through GMail, - TRUE

which has outstanding virus/spam protection. - TRUE

GMail also delivered it to my inbox and reported no issues. - TRUE

I'd love to see it, - TRUE

but I can't find any evidence that backs up your claim. - TRUE

If one says they cannot find evidence, and then evidence is found, they are not wrong. They are still absolutely correct that

they could not find evidence. I am glad someone with the facts, which I did not have, was able to come in and give a

definitive answer. Had I pretended my tests were fact and said "there are no trojans" you're right, I would have been wrong.

Whereas you assert that "Both of them were wrong." Which is false.

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 11, 2008 12:37 PM in response to: Hans Forbrich
Reply

> We all know that Larry, Charles and Jeff have limited

> patience with systems [performance]. If they are

> moderately satisfied with the real-world performance

> of Oracle's internal real-world systems, and if those

> systems use 8K blocks (or ... if one database uses

> only one block size), then I'd think that makes a

> significant statement in terms of this thread.

Hans,

I think you too ignore the actual debate on this thread. Let me remind you,

"Does higher db_block_size perform better in DW applications?".

I think you, with many, are too much eager to claim victory, rather then

presenting your test case to back the claim.

Hans

Forbrich

Posts: 7,483

From: AB, Canada

Registered: 3/13/99

Re: Larger vs. Small data block

Posted: Jun 11, 2008 12:44 PM in response to: sp009
Reply

> > We all know that Larry, Charles and Jeff have limited

> > patience with systems [performance]. If they are

> > moderately satisfied with the real-world performance

> > of Oracle's internal real-world systems, and if those

> > systems use 8K blocks (or ... if one database uses

> > only one block size), then I'd think that makes a

> > significant statement in terms of this thread.

>

> Hans,

>

> I think you too ignore the actual debate on this

> thread. Let me remind you,

> "Does higher db_block_size perform better in DW

> applications?".

> I think you, with many, are too much eager to claim

> victory, rather then

> presenting your test case to back the claim.

I think you are too quick to ignore the fact that Oracle

internal systems include Data Warehouses and that Oracle's

decision as for block size being used on their systems is

also a real world test case that provides input to your

question.

Personally I don't need to claim victory. Indeed, I did

not even imply that Oracle's experience would provide

a conclusion. I did state that it would provide a

significant statement - meaning that it provides real

world input to your question.

I think you are very quick in trying to accept things that

support your idea and very quick to dismiss things that

seem to contradict what you wish to prove. At least that

is the feeling that comes from your last comment to me.

Message was edited by: Hans Forbrich

As I am on record as writing, and saying to my students

and my customers: with Oracle, the only conclusive

benchmark or answer is one that you have tested in your

environment. And even that might change with any patch or

change in environment.

The only thing I can bring to the table is experience that

might shortcut the time to complete that benchmark. And

I constantly get new experience.

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 11, 2008 12:46 PM in response to: Steve Karam
Reply

> > b) Steve Karam was correct in his observation that

> > when he did his testing there were no trojans,

> > because he didn't see a trojan. However, he may

>> have failed to detect the "trojan" because he saw it,

>> knew what it really was, and discounted it; or he may

> > simply not have noticed.

>

> > c) Both of them were wrong, and careful testing would

> > have shown this. Both could have claimed (and did)

> > that their observations were valid because they were

> > based on "empirical observations" of a "real-world

> > system".

>

>

> If one says they cannot find evidence, and then

> evidence is found, they are not wrong.

Steve,

My apologies, I had not intended to hurt your feelings - let me shorten and rephrase my comments:

a) Faust observed evidence of a trojan

b) Steve observed no evidence of a trojan

c) Both were arguably wrong - Faust because the trojan could be labelled harmless, and Steve because there was a trojan, but

it had not been flagged as such by any of the mechanisms that he had used.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 11, 2008 12:49 PM in response to:
Reply

> >> It would be advantageous to see some AWR or Statspack of before and after.

>

> I agree.

> How about some "real world" case studies on this issue.

> Any hope for "real world" reports, from real shops?

I have not recommended nor implemented a block size change so I have no data to share. This is why I've asked you to publish

yours. If I had some to share, I would.

> Like I said, it's Oracle's job to educate us, not the other way around!

So, if I understand correctly, you want me to educate & share (because I happen to work for Oracle), but you do not want to

reciprocate? Why are you hiding behind that argument? Are you looking for excuses?

> Why all of these artificial tests from a "real world" group?

Perhaps you have a misunderstanding of the context “real-world” here. Its meaning is related understanding how the stack

(software & hardware) works as it is used on a day-to-day basis by customers. The RWPG has a broader focus on performance than

say the TPC groups who have been working on the same benchmarks for say 10 years or so. Both groups contribute to database

performance, but in different ways. TPC test things at extreme, but the amount of code path and features involved by the test

is much less than a customer would use. RWPG brings back experience from customer benchmarks and performance challenges.

I would not call them “artificial”; they are focused tests. Let’s take the topic here: block size and alleged performance

gains. If someone reports an observed gain by changing the block size, my immediate question is “Why?”. Is it related solely

to the block size or did changing the block size in tern cause other changes that are not being recognized (like a change in

execution plans)? So I take my knowledge of the software and ask: “At what levels (areas in the code) could block size (alone)

potentially alter performance?” So I make a list (and ask around development to verify), and construct some focused test cases

to provide metrics that will provide data. The specific areas that I ran my experiments were:

- One table FTS (100% physical reads & 100% buffer cache reads)

- FTS with 2 table Hash Join (100% physical reads & 100% buffer cache reads)

- Single Table Index FFS (100% physical reads & 100% buffer cache reads)

- I’ve even demonstrated that there is no performance advantage for a FTS with 1MB MBRC reads with any block size between 2k

and 16k

This is by no means a comprehensive list but it is a start. It focuses on two key areas: physical I/O and buffer cache I/O,

probably two of the most influential areas when it comes to block size and query response time (assuming all others constant).

And I have yet to observe any evidence to support that block size matters.

Now, I have also offered my interpretation of the data. For example: when MBRC is left unset, a FTS will read 1MB or data,

regardless of the block size. I offered my grab-from-the-coin-bucket explanation of why.

Since neither you or sp009 or have provided your supporting data, or any test cases or experiments, I don’t have much option

than to try and create it.

sp009: I spoke with the editor-in-chief of Oracle Magazine and he has not seen a proposal for the paper the “Guru” you are

working with mentioned. Be sure to have him submit it.

--

Regards,

Greg Rahn

http://structureddata.org

Steve

Karam

Posts: 126

From: Virginia Beach, VA

Registered: 9/14/05

Re: Larger vs. Small data block

Posted: Jun 11, 2008 1:05 PM in response to: Jonathan Lewis
Reply

> My apologies, I had not intended to hurt your

> feelings

It's okay, you couldn't hurt my feelings. I just wanted to make sure we get all the facts straight before we toss out the word

'wrong'.

Which could arguably be a microcosm of this thread, as well.

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 11, 2008 1:45 PM in response to: Hans Forbrich

> Which implies that you are actually using real world systems, and creating test cases that model specific

> aspects of the real world so that you can determine individual influences. And probably verifying that

> the models and influences thereon are actually valid in the real world.

>

> Seems contradictory to some of the comments and implications alluded to by the representative of at

> least one popular consulting company.

You are correct. We do interact with real-world systems (both customer and Oracle internal) and when we observe a phenomenon at a customer’s

site, we do analysis to understand why, and are almost always successful in reproducing it in-house. This allows bug fixes or changes to be

effective to the specific problem. Of course, this is verified by applying the fix/change to the internal test case as well as to the customer’s

site.

Do we bring 100% of a customer’s data and workload in? Almost always never. In almost every case an issue can be modeled and simplified when it

is understood. Understanding is generally just a matter of gathering enough data points.

> > 4) I wonder whether Oracle uses multiple block sizes in those apps for any reason other than transportable tablespace.

> >

> > I believe that our internal applications use an 8k block.

>

> Any chance of getting that verified?

I just confirmed with someone who works frequently with those systems and they are not aware of any use of any other block size than 8k.

--

Regards,

Greg Rahn

http://structureddata.org

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 11, 2008 1:57 PM in response to: Charles Hooper

> (Snip)

> > BTW, I agree with Greg that MBRC is also a factor,

> > but for surprizing reasons.

> >

> > What I found on a database just this week, is that

> > ditching the 10.2 MBRC=0 (automatic MBRC tuning)

> and

> > using manual optimization, my client saw a 22%

> > throughput improvement.

> >

> > But even stranger, this is a well-indexed OLTP app

> > that does not do many scattered reads!

> >

> > The conventional wisdon suggests the multi-block

> read

> > size is only for full-scan operations, but I found

> > that optimizing MBRC is also important for

> optimizing

> > inserts on reverse key indexes, and possible index

> > range scans . . .

> (Snip)

>

> You stated:

> "What I found on a database just this week, is

> that ditching the 10.2 MBRC=0 (automatic MBRC tuning)

> and using manual optimization, my client saw a 22%

> throughput improvement."

>

> Are you stating that your client disabled automatic

> tuning of the multi_block_read_count by setting the

> parameter to 0, and you did not tell the client that

> doing so actually sets the parameter's value to 1?

> Or, is this the correct way to disable automatic

> tuning of the multi_block_read_count?

>

> Demonstration:

>

> SQL> SHOW PARAMETER DB_FILE_MULTIBLOCK_READ_COUNT

>

> AME TYPE

> VALUE

> ----------------------------- ----------- -----

> db_file_multiblock_read_count integer 128

>

> QL> ALTER SYSTEM SET DB_FILE_MULTIBLOCK_READ_COUNT=0

> SCOPE=SPFILE;

>

> ystem altered.

>

> Bounce Database Instance)

>

> QL> SHOW PARAMETER DB_FILE_MULTIBLOCK_READ_COUNT

>

> AME TYPE

> VALUE

> ----------------------------- ----------- -----

> db_file_multiblock_read_count integer 1

>

> QL> ALTER SYSTEM RESET DB_FILE_MULTIBLOCK_READ_COUNT

> SCOPE=SPFILE SID='*';

>

> ystem altered.

>

> Bounce Database Instance)

>

> QL> SHOW PARAMETER DB_FILE_MULTIBLOCK_READ_COUNT

>

> AME TYPE

> VALUE

> ----------------------------- ----------- -----

> db_file_multiblock_read_count integer 128

>

>

> Your client only saw a 22% thoughput performance by

> allowing more than one block to be read at a time?

> Maybe I just misunderstood what you stated?

>

> Charles Hooper

> IT Manager/Oracle DBA

> K&M Machine-Fabricating, Inc.

>

> SQL> SHOW PARAMETER DB_FILE_MULTIBLOCK_READ_COUNT was

> mistakenly clipped from the SQL*Plus output just

> before the line showed that the value was set to 1.

> Message was edited by:

> Charles Hooper

Not my call, but i would like you to have a look at

https://metalink.oracle.com/metalink/plsql/f?p=200:27:1190037021398714647::::p27_id,p27_show_header,p27_show_help:714075.993,1,1

jgarry

Posts: 128

From: Just outside of

beautiful Vista, California

Registered: 7/20/98

Re: Larger vs. Small data block

Posted: Jun 11, 2008 1:59 PM in response to:
Reply

> I've been consulting for decades, and I've NEVER has a client agree to the expense

>of re-designing their application. Not one!

>Is your experience different?

Yes. It depends on what particular problem they've bought you in to fix. If you have some penny-wise pound-foolish manager who

has been sold on quick-fixes, you aren't likely to see it. If you have a client with a more strategic vision, they are much

more open to actually making a reasonable decision. If your business model is based on the former, of course you'd have your

experience. That doesn't make your clients smart, it merely shows the value of marketing. It doesn't mean anything bad about

you either, unless you start advocating that is how it generally should be. If you do, you are having serious confusion

between tactical and strategic decisions.

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 11, 2008 2:37 PM in response to: sp009
Reply

> Not my call, but i would like you to have a look at

> https://metalink.oracle.com/metalink/plsql/f?p=200:27:

> 1190037021398714647::::p27_id,p27_show_header,p27_show

> _help:714075.993,1,1

sp009,

Thanks for the link. I did quickly look at the Metalink article. Here is a quick test with SQL*Plus output, since I try to

verify in order to understand what I read:

SQL> SHOW PARAMETER DB_FILE_MULTIBLOCK_READ_COUNT

NAME TYPE VALUE

------------------------------------ ----------- -----

db_file_multiblock_read_count integer 128

SQL> CREATE TABLE T1 AS

 2 SELECT

 3 ROWNUM RN,

 4 TRUNC(SYSDATE)+ROWNUM-3000 DT,

 5 A.*

 6 FROM

 7 ALL_OBJECTS A

 8 WHERE

 9 ROWNUM<=10000;

Table created.

SQL> EXEC DBMS_STATS.GATHER_TABLE_STATS(OWNNAME=>USER,TABNAME=>'T1');

PL/SQL procedure successfully completed.

SQL> ALTER SYSTEM FLUSH BUFFER_CACHE;

System altered.

SQL> ALTER SESSION SET EVENTS '10046 TRACE NAME CONTEXT FOREVER, LEVEL 8';

Session altered.

SQL> SELECT

 2 COUNT(*)

 3 FROM

 4 T1;

 COUNT(*)

 10000

SQL> ALTER SESSION SET EVENTS '10046 TRACE NAME CONTEXT OFF';

From the trace file:

PARSING IN CURSOR #4 len=23 dep=0 uid=429 oct=3 lid=429 tim=989014176 hv=2807425063 ad='50d1b03c'

SELECT

 COUNT(*)

FROM

 T1

END OF STMT

PARSE #4:c=0,e=1569,p=0,cr=0,cu=0,mis=1,r=0,dep=0,og=1,tim=989014166

EXEC #4:c=0,e=159,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,tim=989015768

WAIT #4: nam='SQL*Net message to client' ela= 7 driver id=1413697536 #bytes=1 p3=0 obj#=386 tim=989016181

WAIT #4: nam='db file sequential read' ela= 408 file#=4 block#=1101955 blocks=1 obj#=42089 tim=989017024

WAIT #4: nam='db file scattered read' ela= 703 file#=4 block#=1101956 blocks=5 obj#=42089 tim=989018284

WAIT #4: nam='db file scattered read' ela= 966 file#=4 block#=1102217 blocks=8 obj#=42089 tim=989019972

WAIT #4: nam='db file scattered read' ela= 858 file#=4 block#=1102226 blocks=7 obj#=42089 tim=989021687

WAIT #4: nam='db file scattered read' ela= 914 file#=4 block#=1102233 blocks=8 obj#=42089 tim=989023418

WAIT #4: nam='db file scattered read' ela= 851 file#=4 block#=1102242 blocks=7 obj#=42089 tim=989025099

WAIT #4: nam='db file scattered read' ela= 958 file#=4 block#=1102249 blocks=8 obj#=42089 tim=989026863

WAIT #4: nam='db file scattered read' ela= 847 file#=4 block#=1102258 blocks=7 obj#=42089 tim=989028521

WAIT #4: nam='db file scattered read' ela= 945 file#=4 block#=1102265 blocks=8 obj#=42089 tim=989030214

WAIT #4: nam='db file scattered read' ela= 867 file#=4 block#=1102274 blocks=7 obj#=42089 tim=989032052

WAIT #4: nam='db file scattered read' ela= 931 file#=4 block#=1102281 blocks=8 obj#=42089 tim=989033709

WAIT #4: nam='db file scattered read' ela= 834 file#=4 block#=1102290 blocks=7 obj#=42089 tim=989034996

WAIT #4: nam='db file scattered read' ela= 873 file#=4 block#=1102297 blocks=8 obj#=42089 tim=989036258

WAIT #4: nam='db file scattered read' ela= 863 file#=4 block#=1102306 blocks=7 obj#=42089 tim=989037554

WAIT #4: nam='db file scattered read' ela= 874 file#=4 block#=1102313 blocks=8 obj#=42089 tim=989038817

WAIT #4: nam='db file scattered read' ela= 816 file#=4 block#=1102322 blocks=7 obj#=42089 tim=989040051

WAIT #4: nam='db file scattered read' ela= 895 file#=4 block#=1104633 blocks=8 obj#=42089 tim=989041344

WAIT #4: nam='db file scattered read' ela= 15381 file#=4 block#=1533579 blocks=24 obj#=42089 tim=989057218

FETCH #4:c=15625,e=41844,p=143,cr=146,cu=0,mis=0,r=1,dep=0,og=1,tim=989058387

WAIT #4: nam='SQL*Net message from client' ela= 662 driver id=1413697536 #bytes=1 p3=0 obj#=42089 tim=989059234

FETCH #4:c=0,e=3,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=0,tim=989059324

WAIT #4: nam='SQL*Net message to client' ela= 3 driver id=1413697536 #bytes=1 p3=0 obj#=42089 tim=989059380

WAIT #4: nam='SQL*Net message from client' ela= 834 driver id=1413697536 #bytes=1 p3=0 obj#=42089 tim=989060260

STAT #4 id=1 cnt=1 pid=0 pos=1 obj=0 op='SORT AGGREGATE (cr=146 pr=143 pw=0 time=41842 us)'

STAT #4 id=2 cnt=10000 pid=1 pos=1 obj=42089 op='TABLE ACCESS FULL T1 (cr=146 pr=143 pw=0 time=22164 us)'

SQL> ALTER SYSTEM SET DB_FILE_MULTIBLOCK_READ_COUNT=0 SCOPE=SPFILE;

System altered.

(Bounce Database Instance)

SQL> SHOW PARAMETER DB_FILE_MULTIBLOCK_READ_COUNT

NAME TYPE VALUE

------------------------------------ ----------- -----

db_file_multiblock_read_count integer 1

SQL> ALTER SESSION SET EVENTS '10046 TRACE NAME CONTEXT FOREVER, LEVEL 8';

Session altered.

SQL> SELECT

 2 COUNT(*)

 3 FROM

 4 T1;

 COUNT(*)

 10000

SQL> ALTER SESSION SET EVENTS '10046 TRACE NAME CONTEXT OFF';

From the trace file:

PARSING IN CURSOR #1 len=23 dep=0 uid=429 oct=3 lid=429 tim=1341599911 hv=2807425063 ad='50ddccb4'

SELECT

 COUNT(*)

FROM

 T1

END OF STMT

PARSE #1:c=218750,e=284159,p=38,cr=699,cu=0,mis=1,r=0,dep=0,og=1,tim=1341599899

EXEC #1:c=0,e=116,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,tim=1341600174

WAIT #1: nam='SQL*Net message to client' ela= 6 driver id=1413697536 #bytes=1 p3=0 obj#=10192 tim=1341600243

WAIT #1: nam='db file sequential read' ela= 368 file#=4 block#=1101955 blocks=1 obj#=42089 tim=1341601137

WAIT #1: nam='db file sequential read' ela= 338 file#=4 block#=1101956 blocks=1 obj#=42089 tim=1341601663

WAIT #1: nam='db file sequential read' ela= 316 file#=4 block#=1101957 blocks=1 obj#=42089 tim=1341602088

WAIT #1: nam='db file sequential read' ela= 318 file#=4 block#=1101958 blocks=1 obj#=42089 tim=1341602509

WAIT #1: nam='db file sequential read' ela= 321 file#=4 block#=1101959 blocks=1 obj#=42089 tim=1341602912

WAIT #1: nam='db file sequential read' ela= 375 file#=4 block#=1101960 blocks=1 obj#=42089 tim=1341603395

WAIT #1: nam='db file sequential read' ela= 422 file#=4 block#=1102217 blocks=1 obj#=42089 tim=1341603911

WAIT #1: nam='db file sequential read' ela= 363 file#=4 block#=1102218 blocks=1 obj#=42089 tim=1341604365

WAIT #1: nam='db file sequential read' ela= 366 file#=4 block#=1102219 blocks=1 obj#=42089 tim=1341604818

WAIT #1: nam='db file sequential read' ela= 358 file#=4 block#=1102220 blocks=1 obj#=42089 tim=1341605254

WAIT #1: nam='db file sequential read' ela= 356 file#=4 block#=1102221 blocks=1 obj#=42089 tim=1341605702

WAIT #1: nam='db file sequential read' ela= 364 file#=4 block#=1102222 blocks=1 obj#=42089 tim=1341606168

WAIT #1: nam='db file sequential read' ela= 352 file#=4 block#=1102223 blocks=1 obj#=42089 tim=1341606611

WAIT #1: nam='db file sequential read' ela= 387 file#=4 block#=1102224 blocks=1 obj#=42089 tim=1341607117

WAIT #1: nam='db file sequential read' ela= 341 file#=4 block#=1102226 blocks=1 obj#=42089 tim=1341607551

WAIT #1: nam='db file sequential read' ela= 493 file#=4 block#=1102227 blocks=1 obj#=42089 tim=1341608128

WAIT #1: nam='db file sequential read' ela= 331 file#=4 block#=1102228 blocks=1 obj#=42089 tim=1341608539

WAIT #1: nam='db file sequential read' ela= 332 file#=4 block#=1102229 blocks=1 obj#=42089 tim=1341608953

WAIT #1: nam='db file sequential read' ela= 328 file#=4 block#=1102230 blocks=1 obj#=42089 tim=1341609360

WAIT #1: nam='db file sequential read' ela= 343 file#=4 block#=1102231 blocks=1 obj#=42089 tim=1341609783

WAIT #1: nam='db file sequential read' ela= 367 file#=4 block#=1102232 blocks=1 obj#=42089 tim=1341610241

WAIT #1: nam='db file sequential read' ela= 341 file#=4 block#=1102233 blocks=1 obj#=42089 tim=1341610700

WAIT #1: nam='db file sequential read' ela= 338 file#=4 block#=1102234 blocks=1 obj#=42089 tim=1341611122

WAIT #1: nam='db file sequential read' ela= 337 file#=4 block#=1102235 blocks=1 obj#=42089 tim=1341611543

WAIT #1: nam='db file sequential read' ela= 331 file#=4 block#=1102236 blocks=1 obj#=42089 tim=1341611956

WAIT #1: nam='db file sequential read' ela= 342 file#=4 block#=1102237 blocks=1 obj#=42089 tim=1341612378

WAIT #1: nam='db file sequential read' ela= 3177 file#=4 block#=1102238 blocks=1 obj#=42089 tim=1341615637

WAIT #1: nam='db file sequential read' ela= 2676 file#=4 block#=1102239 blocks=1 obj#=42089 tim=1341618391

WAIT #1: nam='db file sequential read' ela= 1815 file#=4 block#=1102240 blocks=1 obj#=42089 tim=1341620299

WAIT #1: nam='db file sequential read' ela= 6302 file#=4 block#=1102242 blocks=1 obj#=42089 tim=1341626686

WAIT #1: nam='db file sequential read' ela= 5773 file#=4 block#=1102243 blocks=1 obj#=42089 tim=1341632553

WAIT #1: nam='db file sequential read' ela= 828 file#=4 block#=1102244 blocks=1 obj#=42089 tim=1341633462

WAIT #1: nam='db file sequential read' ela= 997 file#=4 block#=1102245 blocks=1 obj#=42089 tim=1341634541

WAIT #1: nam='db file sequential read' ela= 1298 file#=4 block#=1102246 blocks=1 obj#=42089 tim=1341635922

WAIT #1: nam='db file sequential read' ela= 1118 file#=4 block#=1102247 blocks=1 obj#=42089 tim=1341637120

WAIT #1: nam='db file sequential read' ela= 504 file#=4 block#=1102248 blocks=1 obj#=42089 tim=1341637720

WAIT #1: nam='db file sequential read' ela= 488 file#=4 block#=1102249 blocks=1 obj#=42089 tim=1341638292

WAIT #1: nam='db file sequential read' ela= 489 file#=4 block#=1102250 blocks=1 obj#=42089 tim=1341638865

WAIT #1: nam='db file sequential read' ela= 490 file#=4 block#=1102251 blocks=1 obj#=42089 tim=1341639434

WAIT #1: nam='db file sequential read' ela= 489 file#=4 block#=1102252 blocks=1 obj#=42089 tim=1341640005

WAIT #1: nam='db file sequential read' ela= 1417 file#=4 block#=1102253 blocks=1 obj#=42089 tim=1341641509

WAIT #1: nam='db file sequential read' ela= 488 file#=4 block#=1102254 blocks=1 obj#=42089 tim=1341642079

WAIT #1: nam='db file sequential read' ela= 7312 file#=4 block#=1102255 blocks=1 obj#=42089 tim=1341649495

WAIT #1: nam='db file sequential read' ela= 1186 file#=4 block#=1102256 blocks=1 obj#=42089 tim=1341650787

WAIT #1: nam='db file sequential read' ela= 445 file#=4 block#=1102258 blocks=1 obj#=42089 tim=1341651364

WAIT #1: nam='db file sequential read' ela= 479 file#=4 block#=1102259 blocks=1 obj#=42089 tim=1341651933

WAIT #1: nam='db file sequential read' ela= 492 file#=4 block#=1102260 blocks=1 obj#=42089 tim=1341652505

WAIT #1: nam='db file sequential read' ela= 490 file#=4 block#=1102261 blocks=1 obj#=42089 tim=1341653076

WAIT #1: nam='db file sequential read' ela= 1265 file#=4 block#=1102262 blocks=1 obj#=42089 tim=1341654419

WAIT #1: nam='db file sequential read' ela= 499 file#=4 block#=1102263 blocks=1 obj#=42089 tim=1341655003

WAIT #1: nam='db file sequential read' ela= 512 file#=4 block#=1102264 blocks=1 obj#=42089 tim=1341655617

WAIT #1: nam='db file sequential read' ela= 490 file#=4 block#=1102265 blocks=1 obj#=42089 tim=1341656196

WAIT #1: nam='db file sequential read' ela= 494 file#=4 block#=1102266 blocks=1 obj#=42089 tim=1341656769

WAIT #1: nam='db file sequential read' ela= 489 file#=4 block#=1102267 blocks=1 obj#=42089 tim=1341657339

WAIT #1: nam='db file sequential read' ela= 487 file#=4 block#=1102268 blocks=1 obj#=42089 tim=1341657909

WAIT #1: nam='db file sequential read' ela= 490 file#=4 block#=1102269 blocks=1 obj#=42089 tim=1341658479

WAIT #1: nam='db file sequential read' ela= 485 file#=4 block#=1102270 blocks=1 obj#=42089 tim=1341659048

WAIT #1: nam='db file sequential read' ela= 490 file#=4 block#=1102271 blocks=1 obj#=42089 tim=1341659615

WAIT #1: nam='db file sequential read' ela= 1473 file#=4 block#=1102272 blocks=1 obj#=42089 tim=1341661181

WAIT #1: nam='db file sequential read' ela= 510 file#=4 block#=1102274 blocks=1 obj#=42089 tim=1341661772

WAIT #1: nam='db file sequential read' ela= 503 file#=4 block#=1102275 blocks=1 obj#=42089 tim=1341662358

WAIT #1: nam='db file sequential read' ela= 501 file#=4 block#=1102276 blocks=1 obj#=42089 tim=1341662944

WAIT #1: nam='db file sequential read' ela= 495 file#=4 block#=1102277 blocks=1 obj#=42089 tim=1341663530

WAIT #1: nam='db file sequential read' ela= 501 file#=4 block#=1102278 blocks=1 obj#=42089 tim=1341664115

WAIT #1: nam='db file sequential read' ela= 502 file#=4 block#=1102279 blocks=1 obj#=42089 tim=1341664696

WAIT #1: nam='db file sequential read' ela= 520 file#=4 block#=1102280 blocks=1 obj#=42089 tim=1341665311

WAIT #1: nam='db file sequential read' ela= 1473 file#=4 block#=1102281 blocks=1 obj#=42089 tim=1341666867

WAIT #1: nam='db file sequential read' ela= 503 file#=4 block#=1102282 blocks=1 obj#=42089 tim=1341667454

WAIT #1: nam='db file sequential read' ela= 503 file#=4 block#=1102283 blocks=1 obj#=42089 tim=1341668037

WAIT #1: nam='db file sequential read' ela= 502 file#=4 block#=1102284 blocks=1 obj#=42089 tim=1341668621

WAIT #1: nam='db file sequential read' ela= 504 file#=4 block#=1102285 blocks=1 obj#=42089 tim=1341669204

WAIT #1: nam='db file sequential read' ela= 498 file#=4 block#=1102286 blocks=1 obj#=42089 tim=1341669784

WAIT #1: nam='db file sequential read' ela= 501 file#=4 block#=1102287 blocks=1 obj#=42089 tim=1341670365

WAIT #1: nam='db file sequential read' ela= 526 file#=4 block#=1102288 blocks=1 obj#=42089 tim=1341670979

WAIT #1: nam='db file sequential read' ela= 1495 file#=4 block#=1102290 blocks=1 obj#=42089 tim=1341672570

WAIT #1: nam='db file sequential read' ela= 496 file#=4 block#=1102291 blocks=1 obj#=42089 tim=1341673146

WAIT #1: nam='db file sequential read' ela= 492 file#=4 block#=1102292 blocks=1 obj#=42089 tim=1341673721

WAIT #1: nam='db file sequential read' ela= 498 file#=4 block#=1102293 blocks=1 obj#=42089 tim=1341674297

WAIT #1: nam='db file sequential read' ela= 493 file#=4 block#=1102294 blocks=1 obj#=42089 tim=1341674871

WAIT #1: nam='db file sequential read' ela= 497 file#=4 block#=1102295 blocks=1 obj#=42089 tim=1341675446

WAIT #1: nam='db file sequential read' ela= 495 file#=4 block#=1102296 blocks=1 obj#=42089 tim=1341676052

WAIT #1: nam='db file sequential read' ela= 489 file#=4 block#=1102297 blocks=1 obj#=42089 tim=1341676630

WAIT #1: nam='db file sequential read' ela= 1406 file#=4 block#=1102298 blocks=1 obj#=42089 tim=1341678131

WAIT #1: nam='db file sequential read' ela= 479 file#=4 block#=1102299 blocks=1 obj#=42089 tim=1341678694

WAIT #1: nam='db file sequential read' ela= 486 file#=4 block#=1102300 blocks=1 obj#=42089 tim=1341679259

WAIT #1: nam='db file sequential read' ela= 481 file#=4 block#=1102301 blocks=1 obj#=42089 tim=1341679824

WAIT #1: nam='db file sequential read' ela= 486 file#=4 block#=1102302 blocks=1 obj#=42089 tim=1341680389

WAIT #1: nam='db file sequential read' ela= 482 file#=4 block#=1102303 blocks=1 obj#=42089 tim=1341680953

WAIT #1: nam='db file sequential read' ela= 508 file#=4 block#=1102304 blocks=1 obj#=42089 tim=1341681548

WAIT #1: nam='db file sequential read' ela= 479 file#=4 block#=1102306 blocks=1 obj#=42089 tim=1341682112

WAIT #1: nam='db file sequential read' ela= 1371 file#=4 block#=1102307 blocks=1 obj#=42089 tim=1341683566

WAIT #1: nam='db file sequential read' ela= 479 file#=4 block#=1102308 blocks=1 obj#=42089 tim=1341684128

WAIT #1: nam='db file sequential read' ela= 478 file#=4 block#=1102309 blocks=1 obj#=42089 tim=1341684688

WAIT #1: nam='db file sequential read' ela= 479 file#=4 block#=1102310 blocks=1 obj#=42089 tim=1341685248

WAIT #1: nam='db file sequential read' ela= 470 file#=4 block#=1102311 blocks=1 obj#=42089 tim=1341685810

WAIT #1: nam='db file sequential read' ela= 503 file#=4 block#=1102312 blocks=1 obj#=42089 tim=1341686406

WAIT #1: nam='db file sequential read' ela= 5084 file#=4 block#=1102313 blocks=1 obj#=42089 tim=1341691577

WAIT #1: nam='db file sequential read' ela= 350 file#=4 block#=1102314 blocks=1 obj#=42089 tim=1341692008

WAIT #1: nam='db file sequential read' ela= 9164 file#=4 block#=1102315 blocks=1 obj#=42089 tim=1341701254

WAIT #1: nam='db file sequential read' ela= 489 file#=4 block#=1102316 blocks=1 obj#=42089 tim=1341701830

WAIT #1: nam='db file sequential read' ela= 494 file#=4 block#=1102317 blocks=1 obj#=42089 tim=1341702406

WAIT #1: nam='db file sequential read' ela= 505 file#=4 block#=1102318 blocks=1 obj#=42089 tim=1341702995

WAIT #1: nam='db file sequential read' ela= 1182 file#=4 block#=1102319 blocks=1 obj#=42089 tim=1341704257

WAIT #1: nam='db file sequential read' ela= 1825 file#=4 block#=1102320 blocks=1 obj#=42089 tim=1341706172

WAIT #1: nam='db file sequential read' ela= 493 file#=4 block#=1102322 blocks=1 obj#=42089 tim=1341706748

WAIT #1: nam='db file sequential read' ela= 791 file#=4 block#=1102323 blocks=1 obj#=42089 tim=1341707622

WAIT #1: nam='db file sequential read' ela= 1093 file#=4 block#=1102324 blocks=1 obj#=42089 tim=1341708793

WAIT #1: nam='db file sequential read' ela= 470 file#=4 block#=1102325 blocks=1 obj#=42089 tim=1341709345

WAIT #1: nam='db file sequential read' ela= 468 file#=4 block#=1102326 blocks=1 obj#=42089 tim=1341709892

WAIT #1: nam='db file sequential read' ela= 464 file#=4 block#=1102327 blocks=1 obj#=42089 tim=1341710439

WAIT #1: nam='db file sequential read' ela= 3975 file#=4 block#=1102328 blocks=1 obj#=42089 tim=1341714504

WAIT #1: nam='db file sequential read' ela= 1808 file#=4 block#=1104633 blocks=1 obj#=42089 tim=1341716399

WAIT #1: nam='db file sequential read' ela= 6841 file#=4 block#=1104634 blocks=1 obj#=42089 tim=1341723318

WAIT #1: nam='db file sequential read' ela= 1242 file#=4 block#=1104635 blocks=1 obj#=42089 tim=1341724642

WAIT #1: nam='db file sequential read' ela= 499 file#=4 block#=1104636 blocks=1 obj#=42089 tim=1341725222

WAIT #1: nam='db file sequential read' ela= 506 file#=4 block#=1104637 blocks=1 obj#=42089 tim=1341725806

WAIT #1: nam='db file sequential read' ela= 496 file#=4 block#=1104638 blocks=1 obj#=42089 tim=1341726387

WAIT #1: nam='db file sequential read' ela= 499 file#=4 block#=1104639 blocks=1 obj#=42089 tim=1341726966

WAIT #1: nam='db file sequential read' ela= 13127 file#=4 block#=1104640 blocks=1 obj#=42089 tim=1341740204

WAIT #1: nam='db file sequential read' ela= 4825 file#=4 block#=1533579 blocks=1 obj#=42089 tim=1341745154

WAIT #1: nam='db file sequential read' ela= 4883 file#=4 block#=1533580 blocks=1 obj#=42089 tim=1341750130

WAIT #1: nam='db file sequential read' ela= 1220 file#=4 block#=1533581 blocks=1 obj#=42089 tim=1341751433

WAIT #1: nam='db file sequential read' ela= 4578 file#=4 block#=1533582 blocks=1 obj#=42089 tim=1341756105

WAIT #1: nam='db file sequential read' ela= 5921 file#=4 block#=1533583 blocks=1 obj#=42089 tim=1341762105

WAIT #1: nam='db file sequential read' ela= 732 file#=4 block#=1533584 blocks=1 obj#=42089 tim=1341762963

WAIT #1: nam='db file sequential read' ela= 794 file#=4 block#=1533585 blocks=1 obj#=42089 tim=1341763840

WAIT #1: nam='db file sequential read' ela= 771 file#=4 block#=1533586 blocks=1 obj#=42089 tim=1341764694

WAIT #1: nam='db file sequential read' ela= 781 file#=4 block#=1533587 blocks=1 obj#=42089 tim=1341765556

WAIT #1: nam='db file sequential read' ela= 12824 file#=4 block#=1533588 blocks=1 obj#=42089 tim=1341778460

WAIT #1: nam='db file sequential read' ela= 815 file#=4 block#=1533589 blocks=1 obj#=42089 tim=1341779359

WAIT #1: nam='db file sequential read' ela= 4413 file#=4 block#=1533590 blocks=1 obj#=42089 tim=1341783858

WAIT #1: nam='db file sequential read' ela= 6167 file#=4 block#=1533591 blocks=1 obj#=42089 tim=1341790110

WAIT #1: nam='db file sequential read' ela= 478 file#=4 block#=1533592 blocks=1 obj#=42089 tim=1341790669

WAIT #1: nam='db file sequential read' ela= 476 file#=4 block#=1533593 blocks=1 obj#=42089 tim=1341791229

WAIT #1: nam='db file sequential read' ela= 477 file#=4 block#=1533594 blocks=1 obj#=42089 tim=1341791785

WAIT #1: nam='db file sequential read' ela= 6571 file#=4 block#=1533595 blocks=1 obj#=42089 tim=1341798437

WAIT #1: nam='db file sequential read' ela= 1241 file#=4 block#=1533596 blocks=1 obj#=42089 tim=1341799756

WAIT #1: nam='db file sequential read' ela= 485 file#=4 block#=1533597 blocks=1 obj#=42089 tim=1341800324

WAIT #1: nam='db file sequential read' ela= 489 file#=4 block#=1533598 blocks=1 obj#=42089 tim=1341800891

WAIT #1: nam='db file sequential read' ela= 484 file#=4 block#=1533599 blocks=1 obj#=42089 tim=1341801458

WAIT #1: nam='db file sequential read' ela= 488 file#=4 block#=1533600 blocks=1 obj#=42089 tim=1341802025

WAIT #1: nam='db file sequential read' ela= 4159 file#=4 block#=1533601 blocks=1 obj#=42089 tim=1341806266

WAIT #1: nam='db file scattered read' ela= 13817 file#=4 block#=1533602 blocks=7 obj#=42089 tim=1341820190

FETCH #1:c=15625,e=220015,p=149,cr=146,cu=0,mis=0,r=1,dep=0,og=1,tim=1341820319

WAIT #1: nam='SQL*Net message from client' ela= 604 driver id=1413697536 #bytes=1 p3=0 obj#=42089 tim=1341821085

FETCH #1:c=0,e=2,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=0,tim=1341821164

WAIT #1: nam='SQL*Net message to client' ela= 3 driver id=1413697536 #bytes=1 p3=0 obj#=42089 tim=1341821215

WAIT #1: nam='SQL*Net message from client' ela= 507 driver id=1413697536 #bytes=1 p3=0 obj#=42089 tim=1341821764

STAT #1 id=1 cnt=1 pid=0 pos=1 obj=0 op='SORT AGGREGATE (cr=146 pr=149 pw=0 time=220017 us)'

STAT #1 id=2 cnt=10000 pid=1 pos=1 obj=42089 op='TABLE ACCESS FULL T1 (cr=146 pr=149 pw=0 time=201385 us)'

As you can see, Oracle dropped from reading 7 or 8 blocks at a time (the reason is explained in this thread) to reading 1

block at a time. I have not yet run the two files through TKPROF, but I would guess that it is faster to read 8 blocks at a

time than it is to read 8 blocks, one block at a time.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 11, 2008 3:00 PM in response to: Charles Hooper

> As you can see, Oracle dropped from reading 7 or 8

> blocks at a time (the reason is explained in this

> thread) to reading 1 block at a time. I have not yet

> run the two files through TKPROF, but I would guess

> that it is faster to read 8 blocks at a time than it

> is to read 8 blocks, one block at a time.

Charles,

>As you can see, Oracle dropped from reading 7 or 8 blocks at a time (the reason is explained in this thread)

>to reading 1 block at a time. I have not yet run the two files through TKPROF, but I would guess that it is faster

>to read 8 blocks at a time than it is to read 8 blocks, one block at a time

I think, that’s what Mr.Burlson mean by stating

> What I found on a database just this week, is that

> ditching the 10.2 MBRC=0 (automatic MBRC tuning) and

> using manual optimization, my client saw a 22%

> throughput improvement.

Coincidently i run similar test like yours in my test system a day back. But i got a different number

in MBRC other than 1. Honestly, i don't think any point in posting any proof result any more.

Regards,

sp009

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 11, 2008 3:01 PM in response to: sp009

xxx xxxxxxxx wrote:

What I found on a database just this week, is that ditching the 10.2 MBRC=0 (automatic MBRC tuning) and using manual optimization, my client saw

a 22%

throughput improvement.

sp009 wrote:

Not my call, but i would like you to have a look at

https://metalink.oracle.com/metalink/plsql/f?p=200:27:1190037021398714647::::p27_id,p27_show_header,p27_show_help:71475.993,1,1

Charles Hooper wrote:

As you can see, Oracle dropped from reading 7 or 8 blocks at a time (the reason is explained in this thread) to reading 1 block at a time.

There is a bug on this: bug 5768025

Setting DB_FILE_MULTIBLOCK_READ_COUNT=0 incorrectly results in DB_FILE_MULTIBLOCK_READ_COUNT=1 and does not enable self-tuning MBRC.

Workaround: do not set DB_FILE_MULTIBLOCK_READ_COUNT as an init.ora parameter

--

Regards,

Greg Rahn

http://structureddata.org

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 11, 2008 3:14 PM in response to: sp009
Reply

sp009

>

> Not my call, but i would like you to have a look at

> https://metalink.oracle.com/metalink/plsql/f?p=200:27:

> 1190037021398714647::::p27_id,p27_show_header,p27_show

> _help:714075.993,1,1

Any particular reason why you think that that page is worth reading ?

The thing that surprised me most was that the initial posting said that a range of 3.324 seconds to 5.357 seconds was

indicative of "almost no effect on performance".

Switching db_file_mulitblock_read_count to zero in 10.2 wll make the optimizer use a value of 1, it doesn't enable the

automatic selection. I mentioned this a few weeks ago on the following thread:

http://forums.oracle.com/forums/message.jspa?messageID=2499205#2499205

The first reply (Edward Maynard) is misleading - if the system statistics are set then (apart from edge cases which are

discussed on my blog http://jonathanlewis.wordpress.com/2007/05/20/system-stats-strategy/) the optimizer uses the MBRC value

for costing purposes, and the run-time engine still uses the db_file_multiblock_read_count for execution purposes.

The second reply (Oracle, Helmut Pfau) is misleading - it applies to 8i, and to later versions if system statistics have not

been collected.

The third reply (from the OP) shows that he has noted that setting the db_file_multiblock_read_count to zero is equivalent to

setting it to 1.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Hans

Forbrich

Posts: 7,483

From: AB, Canada

Registered: 3/13/99

Re: Larger vs. Small data block

Posted: Jun 11, 2008 6:41 PM in response to: Greg Rahn
Reply

> > > 4) I wonder whether Oracle uses multiple block sizes in those

> > > apps for any reason other than transportable tablespace.

> > >

> > > I believe that our internal applications use an 8k block.

> >

> > Any chance of getting that verified?

>

> I just confirmed with someone who works frequently

> with those systems and they are not aware of any use

> of any other block size than 8k.

>

Thanks for that, Greg.

So we now have a data point in the discussion about multiple block sizes, as well as non-default block sizes, for various

real-world loads. That data point does not make use of test data, simulations, harnesses, or any other hypothetical methods.

We know that Oracle is a 50,000+ employee, $10b+ company who run Oracle E-Business, Peoplesoft and Siebel applications and

related warehouses and BI. That sounds like a real-world load to me.

The only meaningful performance tuning criteria is user satisfaction. Everything else (including traces and statspack) is

simply metrics to measure, support or argue against that criteria. We can also surmise that the CEO, CFO and Presidents of a

company like Oracle will not tolerate performance issues in retrieving their data for BI purposes.

We also know that the Oracle internal applications use the default block size, and we/they are not aware of any non-default or

multiple block size settings, in their real world systems. They have not changed that for performance purposes.

This does not imply that such a change will never be useful. Nor does it imply that such a change will never yield benefits.

(Sorry for the double-negatives.)

It does imply that such a change is likely far down the list of possible changes to review in real-world loads as represented

by Oracle's own internal systems.

(Which leads me to wonder why there have been over 250 sometimes very passionate replies around this topic. Is this yet

another 'making a mountain out of molehill' story? <g>)

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 11, 2008 6:58 PM in response to: Steve Karam
Reply

One of the issues with RAC, unfortunately, is that while Oracle calls a 2 node cluster a special case we all know that a large

percentage of cluster builders ignore that advice and build them anyway. More nodes provides many values among which is the

ability to use services to partition different workloads.

That said there are many ways to reduce the number of rows stored in a block. Changing the block size to 2K is only one of

them. The claim that somehow reducing interconnect traffic supports making 2K blocks is like claiming that infections support

the use of penicillin. Penicillin is one possible solution to an infection: Not the only solution. Similarly all RAC clusters

will not benefit from a 2K block any more than you can kill a gram negative cell with penicillin.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 11, 2008 7:14 PM in response to: Jonathan Lewis
Reply

Same experience here. Just signed a contract today with a client that starts with a decision to solve the problem with a

redesign.

Part of that redesign will likely include adding a TimesTen infrastructure.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 11, 2008 7:22 PM in response to: chris_c
Reply

My favorite paragraph from the metalink note is:

"Rebuilding such indexes can actually be detrimental to overall performance for a number of reasons. Firstly, it requires a

significant amount of resources and can conflict with the general running of the database. But perhaps more importantly, it

can actually be self-defeating in what rebuilds are supposed to achieve. That's because after an index rebuild, the index is

more tightly packed with less overall free space (else why rebuild).

This means however that index splits are more likely to now occur which directly impacts performance due to the additional I/O

and CPU this entails. And after the block split, we now have two blocks each with 50% free space. After a period of time, the

index potentially has "issues" due to insufficient used space and the vicious rebuild cycle continues. The better course of

action is to do nothing and let the index evolve to it's natural "equilibrium"."

This same advice was given at OpenWorld last year by Richard Foote as part of the Unconference. And has been given by Richard

and other Oakies at a number of Oracle conferences I have attended.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 11, 2008 7:28 PM in response to: Hans Forbrich
Reply

I too have been told that all internal Oracle systems use an 8K block.

David

Aldridge

Posts: 1,022

From: XM Satellite Radio,

Washington DC

Registered: 10/5/98

Re: Larger vs. Small data block

Posted: Jun 11, 2008 7:37 PM in response to: sp009
Reply

> Coincidently i run similar test like yours in my test

> system a day back. But i got a different number

> in MBRC other than 1. Honestly, i don't think any

> point in posting any proof result any more.

But here is the critical issue when it comes to proof -- Charles shared a script and methodology for determining the behaviour

of Oracle when you modify a particular parameter. Maybe that behaviour does change with release, but now people have something

to take to their own system to determine the effect for themnselves.

To me that is the whole essence of providing scripts and proofs -- that they allow everyone to run their own tests on their

own systems and intelligently interpret the results. That is infinitely more worthwhile to the Oracle community than

generalities.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 11, 2008 7:50 PM in response to: David Aldridge
Reply

Your point was poignantly made for me with an example I created for teaching my students at the university.

Here's the statement:

SELECT DISTINCT srvr_id

FROM servers

WHERE srvr_id NOT IN (

 SELECT srvr_id

 FROM servers

 MINUS

 SELECT srvr_id

 FROM serv_inst);

Anyone wishing to create a "general rule" about this query had best run an Explain Plan in 8.1.7.4, 9.2.0.4, and 10.2.0.1

before they do so.

The query setup and test queries for the class are here:

http://www.psoug.org/reference/explain_plan.html

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 11, 2008 9:14 PM in response to: damorgan
Reply

Mr. Damorgan,

I would like to have a look at page#3 by JL

>>Neither database took any time to run the query - what you're looking

>>at is execution plan which is the predicted cost and time to run.

No more Comments...

sp009

David

Aldridge

Posts: 1,022

From: XM Satellite Radio,

Washington DC

Registered: 10/5/98

Re: Larger vs. Small data block

Posted: Jun 11, 2008 9:50 PM in response to: sp009
Reply

> Mr. Damorgan,

>

> I would like to have a look at page#3 by JL

>

> >>Neither database took any time to run the query -

> what you're looking

> >>at is execution plan which is the predicted cost

> and time to run.

>

> No more Comments...

>

> sp009

JL's point was that cost reductions do not demonstrate performance improvements. If they did then the optimizer's choice of

the lowest cost execution plan would be perfect, and we know that's not the case.

DAM's point was that with changes in Oracle version the same query will be optimized to different execution plans.

The former does not invalidate the latter, if that was your point.

Faust

Posts: 797

From: Middle Europe

Registered: 1/1/07

Re: Larger vs. Small data block

Posted: Jun 12, 2008 5:56 AM in response to: Jonathan Lewis
Reply

> Woody,

>

> > The initial email sent with the URL to login to

> the

> > StatspackAnalyzer.com tool has included a

> graphical

> > tracking bit. This bit tells us one thing... that

> > the email has been opened. It is our best way to

> > verify that there is not something wrong with our

> > email system and also to do a rough check to see

> if

> > people are actually opening the emails we send out

> > with the login.

>

> Thank you for this posting. Apart from re-assuring

> your potential users, it's also captured the theme of

> thread in a microcosm.

>

> a) Faust was correct in his observation that the

> email carried a trojan - but his degree of

> information (or interest) did not extend far enough

> to discover that the trojan was a harmless graphical

> tracking bit.

>

> b) Steve Karam was correct in his observation that

> when he did his testing there were no trojans,

> because he didn't see a trojan. However, he may have

> failed to detect the "trojan" because he saw it, knew

> what it really was, and discounted it; or he may

> simply not have noticed.

>

> c) Both of them were wrong, and careful testing would

> have shown this. Both could have claimed (and did)

> that their observations were valid because they were

> based on "empirical observations" of a "real-world

> system".

Definitely agree with you Jonathan.

Thanks to all who posted material usefull for clarifying this!

Regards,

Faust

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 12, 2008 7:34 AM in response to: Charles Hooper
Reply

> (Snip)

> > BTW, I agree with Greg that MBRC is also a factor,

> > but for surprizing reasons.

> >

> > What I found on a database just this week, is that

> > ditching the 10.2 MBRC=0 (automatic MBRC tuning)

> and

> > using manual optimization, my client saw a 22%

> > throughput improvement.

> >

> > But even stranger, this is a well-indexed OLTP app

> > that does not do many scattered reads!

> >

> > The conventional wisdon suggests the multi-block

> read

> > size is only for full-scan operations, but I found

> > that optimizing MBRC is also important for

> optimizing

> > inserts on reverse key indexes, and possible index

> > range scans . . .

> (Snip)

>

>

> You stated:

> "What I found on a database just this week, is

> that ditching the 10.2 MBRC=0 (automatic MBRC tuning)

> and using manual optimization, my client saw a 22%

> throughput improvement."

I see that Mr. xxxxxxxx has removed the above comment from his post to which I had replied.

Just to make certain that my tests of MBRC using artificial data were not invalid, I performed a test on a production database

server against live data. The server is running Oracle 10.2.0.2 on Windows 2003 x64 using RAID 10 with the read cache

disabled, and the database has an 8KB block size. Since this is the same Oracle version as my test case, I did not trying to

set MBRC=0 to force automatic MBRC tuning, as it was found that this caused single block reads, rather than multi-block reads.

The first test sets DB_FILE_MULTIBLOCK_READ_COUNT to 32, which yields a maximum of a 256KB multi-block scattered read. I had

previously seen articles recommending 64KB or 128KB as the maximum size of multi-block scattered reads on Windows

(DB_FILE_MULTIBLOCK_READ_COUNT of 8 or 16 with 8KB block size), including the following older documents:

http://www.pafumi.net/Oracle_on_NT.htm

http://download-east.oracle.com/docs/html/A76956_01/create.htm

The second test removed DB_FILE_MULTIBLOCK_READ_COUNT from the spfile, thus allowing Oracle to automatically set

DB_FILE_MULTIBLOCK_READ_COUNT to 128 (1MB multi-block read size). The results were a bit surprising - a single 1MB scattered

read required less time to complete than a single 256KB scattered read on exactly the same data (index fast full scan was

used, so it was actually scanning the index and not the table).

From the 10046 trace, with DB_FILE_MULTIBLOCK_READ_COUNT set to 32 (note: buffer cache flushed before execution):

PARSE #3:c=0,e=15392,p=1,cr=20,cu=0,mis=1,r=0,dep=0,og=1,tim=2385093630

EXEC #3:c=0,e=49,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,tim=2385093737

WAIT #3: nam='SQL*Net message to client' ela= 5 driver id=1413697536 #bytes=1 p3=0 obj#=43161 tim=2385093779

WAIT #3: nam='db file sequential read' ela= 10394 file#=4 block#=979859 blocks=1 obj#=43151 tim=2385104277

WAIT #3: nam='db file scattered read' ela= 14291 file#=4 block#=979860 blocks=5 obj#=43151 tim=2385118750

WAIT #3: nam='db file scattered read' ela= 13416 file#=4 block#=979865 blocks=8 obj#=43151 tim=2385132451

WAIT #3: nam='db file scattered read' ela= 5457 file#=4 block#=979874 blocks=7 obj#=43151 tim=2385138359

WAIT #3: nam='db file scattered read' ela= 14608 file#=4 block#=979881 blocks=8 obj#=43151 tim=2385153372

WAIT #3: nam='db file scattered read' ela= 516 file#=4 block#=979890 blocks=7 obj#=43151 tim=2385154326

WAIT #3: nam='db file scattered read' ela= 545 file#=4 block#=979897 blocks=8 obj#=43151 tim=2385155264

WAIT #3: nam='db file scattered read' ela= 512 file#=4 block#=979906 blocks=7 obj#=43151 tim=2385156220

WAIT #3: nam='db file scattered read' ela= 551 file#=4 block#=979913 blocks=8 obj#=43151 tim=2385157169

WAIT #3: nam='db file scattered read' ela= 516 file#=4 block#=979922 blocks=7 obj#=43151 tim=2385158129

WAIT #3: nam='db file scattered read' ela= 554 file#=4 block#=979929 blocks=8 obj#=43151 tim=2385159079

WAIT #3: nam='db file scattered read' ela= 514 file#=4 block#=979938 blocks=7 obj#=43151 tim=2385160052

WAIT #3: nam='db file scattered read' ela= 558 file#=4 block#=979945 blocks=8 obj#=43151 tim=2385161008

WAIT #3: nam='db file scattered read' ela= 516 file#=4 block#=979954 blocks=7 obj#=43151 tim=2385161962

WAIT #3: nam='db file scattered read' ela= 548 file#=4 block#=979961 blocks=8 obj#=43151 tim=2385162910

WAIT #3: nam='db file scattered read' ela= 508 file#=4 block#=979970 blocks=7 obj#=43151 tim=2385163850

WAIT #3: nam='db file scattered read' ela= 4359 file#=4 block#=980617 blocks=8 obj#=43151 tim=2385168604

WAIT #3: nam='db file scattered read' ela= 5218 file#=4 block#=980747 blocks=32 obj#=43151 tim=2385174327

WAIT #3: nam='db file scattered read' ela= 2076 file#=4 block#=980779 blocks=32 obj#=43151 tim=2385178342

WAIT #3: nam='db file scattered read' ela= 2037 file#=4 block#=980811 blocks=32 obj#=43151 tim=2385182061

WAIT #3: nam='db file scattered read' ela= 1949 file#=4 block#=980843 blocks=30 obj#=43151 tim=2385185699

WAIT #3: nam='db file scattered read' ela= 2023 file#=4 block#=980875 blocks=32 obj#=43151 tim=2385189314

WAIT #3: nam='db file scattered read' ela= 2046 file#=4 block#=980907 blocks=32 obj#=43151 tim=2385193194

WAIT #3: nam='db file scattered read' ela= 2023 file#=4 block#=980939 blocks=32 obj#=43151 tim=2385196921

WAIT #3: nam='db file scattered read' ela= 1945 file#=4 block#=980971 blocks=30 obj#=43151 tim=2385200546

WAIT #3: nam='db file scattered read' ela= 2037 file#=4 block#=981003 blocks=32 obj#=43151 tim=2385204171

WAIT #3: nam='db file scattered read' ela= 2599 file#=4 block#=981035 blocks=32 obj#=43151 tim=2385208540

WAIT #3: nam='db file scattered read' ela= 4730 file#=4 block#=981067 blocks=32 obj#=43151 tim=2385214966

WAIT #3: nam='db file scattered read' ela= 1920 file#=4 block#=981099 blocks=30 obj#=43151 tim=2385218565

WAIT #3: nam='db file scattered read' ela= 2039 file#=4 block#=981131 blocks=32 obj#=43151 tim=2385222184

WAIT #3: nam='db file scattered read' ela= 2039 file#=4 block#=981163 blocks=32 obj#=43151 tim=2385225912

WAIT #3: nam='db file scattered read' ela= 6530 file#=4 block#=981195 blocks=32 obj#=43151 tim=2385234108

WAIT #3: nam='db file scattered read' ela= 1941 file#=4 block#=981227 blocks=30 obj#=43151 tim=2385237734

WAIT #3: nam='db file scattered read' ela= 2026 file#=4 block#=981259 blocks=32 obj#=43151 tim=2385241340

WAIT #3: nam='db file scattered read' ela= 2024 file#=4 block#=981291 blocks=32 obj#=43151 tim=2385245040

WAIT #3: nam='db file scattered read' ela= 2029 file#=4 block#=981323 blocks=32 obj#=43151 tim=2385248754

WAIT #3: nam='db file scattered read' ela= 1950 file#=4 block#=981355 blocks=30 obj#=43151 tim=2385252400

WAIT #3: nam='db file scattered read' ela= 2030 file#=4 block#=981387 blocks=32 obj#=43151 tim=2385256024

...

WAIT #3: nam='db file scattered read' ela= 2032 file#=4 block#=985227 blocks=32 obj#=43151 tim=2385788598

WAIT #3: nam='db file scattered read' ela= 2011 file#=4 block#=985259 blocks=32 obj#=43151 tim=2385792264

WAIT #3: nam='db file scattered read' ela= 2019 file#=4 block#=985291 blocks=32 obj#=43151 tim=2385795955

WAIT #3: nam='db file scattered read' ela= 2803 file#=4 block#=985323 blocks=30 obj#=43151 tim=2385800415

FETCH #3:c=312500,e=707606,p=4655,cr=4668,cu=0,mis=0,r=1,dep=0,og=1,tim=2385801426

WAIT #3: nam='SQL*Net message from client' ela= 329 driver id=1413697536 #bytes=1 p3=0 obj#=43151 tim=2385801887

FETCH #3:c=0,e=2,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=0,tim=2385801946

WAIT #3: nam='SQL*Net message to client' ela= 2 driver id=1413697536 #bytes=1 p3=0 obj#=43151 tim=2385801978

WAIT #3: nam='SQL*Net message from client' ela= 588 driver id=1413697536 #bytes=1 p3=0 obj#=43151 tim=2385802600

STAT #3 id=1 cnt=1 pid=0 pos=1 obj=0 op='SORT AGGREGATE (cr=4668 pr=4655 pw=0 time=707601 us)'

STAT #3 id=2 cnt=2557544 pid=1 pos=1 obj=43151 op='INDEX FAST FULL SCAN X_INV_7 (cr=4668 pr=4655 pw=0 time=5140073 us)'

From the 10046 trace, with DB_FILE_MULTIBLOCK_READ_COUNT not manually specified (note: buffer cache flushed before execution):

PARSE #3:c=31250,e=62958,p=8,cr=273,cu=0,mis=1,r=0,dep=0,og=1,tim=2580626091

EXEC #3:c=0,e=51,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,tim=2580626198

WAIT #3: nam='SQL*Net message to client' ela= 4 driver id=1413697536 #bytes=1 p3=0 obj#=43161 tim=2580626241

WAIT #3: nam='db file sequential read' ela= 144 file#=4 block#=979859 blocks=1 obj#=43151 tim=2580626488

WAIT #3: nam='db file scattered read' ela= 133 file#=4 block#=979860 blocks=5 obj#=43151 tim=2580626768

WAIT #3: nam='db file scattered read' ela= 158 file#=4 block#=979865 blocks=8 obj#=43151 tim=2580627252

WAIT #3: nam='db file scattered read' ela= 149 file#=4 block#=979874 blocks=7 obj#=43151 tim=2580627911

WAIT #3: nam='db file scattered read' ela= 149 file#=4 block#=979881 blocks=8 obj#=43151 tim=2580628519

WAIT #3: nam='db file scattered read' ela= 143 file#=4 block#=979890 blocks=7 obj#=43151 tim=2580629156

WAIT #3: nam='db file scattered read' ela= 156 file#=4 block#=979897 blocks=8 obj#=43151 tim=2580629761

WAIT #3: nam='db file scattered read' ela= 146 file#=4 block#=979906 blocks=7 obj#=43151 tim=2580630409

WAIT #3: nam='db file scattered read' ela= 150 file#=4 block#=979913 blocks=8 obj#=43151 tim=2580631008

WAIT #3: nam='db file scattered read' ela= 146 file#=4 block#=979922 blocks=7 obj#=43151 tim=2580631659

WAIT #3: nam='db file scattered read' ela= 164 file#=4 block#=979929 blocks=8 obj#=43151 tim=2580632273

WAIT #3: nam='db file scattered read' ela= 147 file#=4 block#=979938 blocks=7 obj#=43151 tim=2580632937

WAIT #3: nam='db file scattered read' ela= 146 file#=4 block#=979945 blocks=8 obj#=43151 tim=2580633536

WAIT #3: nam='db file scattered read' ela= 143 file#=4 block#=979954 blocks=7 obj#=43151 tim=2580634180

WAIT #3: nam='db file scattered read' ela= 155 file#=4 block#=979961 blocks=8 obj#=43151 tim=2580634795

WAIT #3: nam='db file scattered read' ela= 143 file#=4 block#=979970 blocks=7 obj#=43151 tim=2580635434

WAIT #3: nam='db file scattered read' ela= 149 file#=4 block#=980617 blocks=8 obj#=43151 tim=2580636036

WAIT #3: nam='db file scattered read' ela= 1686 file#=4 block#=980747 blocks=126 obj#=43151 tim=2580638453

WAIT #3: nam='db file scattered read' ela= 1680 file#=4 block#=980875 blocks=126 obj#=43151 tim=2580648483

WAIT #3: nam='db file scattered read' ela= 1676 file#=4 block#=981003 blocks=126 obj#=43151 tim=2580658531

WAIT #3: nam='db file scattered read' ela= 1717 file#=4 block#=981131 blocks=126 obj#=43151 tim=2580668593

WAIT #3: nam='db file scattered read' ela= 1713 file#=4 block#=981259 blocks=126 obj#=43151 tim=2580678713

WAIT #3: nam='db file scattered read' ela= 1679 file#=4 block#=981387 blocks=126 obj#=43151 tim=2580688829

WAIT #3: nam='db file scattered read' ela= 1685 file#=4 block#=981515 blocks=126 obj#=43151 tim=2580698915

WAIT #3: nam='db file scattered read' ela= 1691 file#=4 block#=981643 blocks=126 obj#=43151 tim=2580709020

WAIT #3: nam='db file scattered read' ela= 1784 file#=4 block#=981771 blocks=126 obj#=43151 tim=2580719176

WAIT #3: nam='db file scattered read' ela= 1701 file#=4 block#=981899 blocks=126 obj#=43151 tim=2580729291

WAIT #3: nam='db file scattered read' ela= 1679 file#=4 block#=982027 blocks=126 obj#=43151 tim=2580739559

WAIT #3: nam='db file scattered read' ela= 1674 file#=4 block#=982155 blocks=126 obj#=43151 tim=2580749868

WAIT #3: nam='db file scattered read' ela= 1680 file#=4 block#=982283 blocks=126 obj#=43151 tim=2580759802

WAIT #3: nam='db file scattered read' ela= 1688 file#=4 block#=982411 blocks=126 obj#=43151 tim=2580769935

WAIT #3: nam='db file scattered read' ela= 1676 file#=4 block#=982539 blocks=126 obj#=43151 tim=2580780224

WAIT #3: nam='db file scattered read' ela= 1675 file#=4 block#=982667 blocks=126 obj#=43151 tim=2580790321

WAIT #3: nam='db file scattered read' ela= 1690 file#=4 block#=982795 blocks=126 obj#=43151 tim=2580800425

WAIT #3: nam='db file scattered read' ela= 1684 file#=4 block#=982923 blocks=126 obj#=43151 tim=2580810470

WAIT #3: nam='db file scattered read' ela= 1676 file#=4 block#=983051 blocks=126 obj#=43151 tim=2580820535

WAIT #3: nam='db file scattered read' ela= 1717 file#=4 block#=983179 blocks=126 obj#=43151 tim=2580830798

WAIT #3: nam='db file scattered read' ela= 1702 file#=4 block#=983307 blocks=126 obj#=43151 tim=2580840861

WAIT #3: nam='db file scattered read' ela= 1690 file#=4 block#=983435 blocks=126 obj#=43151 tim=2580850868

WAIT #3: nam='db file scattered read' ela= 1684 file#=4 block#=983563 blocks=126 obj#=43151 tim=2580860938

WAIT #3: nam='db file scattered read' ela= 1683 file#=4 block#=983691 blocks=126 obj#=43151 tim=2580870983

WAIT #3: nam='db file scattered read' ela= 1724 file#=4 block#=983819 blocks=126 obj#=43151 tim=2580881069

WAIT #3: nam='db file scattered read' ela= 1712 file#=4 block#=983947 blocks=126 obj#=43151 tim=2580891165

WAIT #3: nam='db file scattered read' ela= 1690 file#=4 block#=984075 blocks=126 obj#=43151 tim=2580901191

WAIT #3: nam='db file scattered read' ela= 1675 file#=4 block#=984203 blocks=126 obj#=43151 tim=2580911220

WAIT #3: nam='db file scattered read' ela= 1678 file#=4 block#=984331 blocks=126 obj#=43151 tim=2580921506

WAIT #3: nam='db file scattered read' ela= 1681 file#=4 block#=984459 blocks=126 obj#=43151 tim=2580931480

WAIT #3: nam='db file scattered read' ela= 1800 file#=4 block#=984587 blocks=126 obj#=43151 tim=2580942451

WAIT #3: nam='db file scattered read' ela= 1686 file#=4 block#=984715 blocks=126 obj#=43151 tim=2580953411

WAIT #3: nam='db file scattered read' ela= 1681 file#=4 block#=984843 blocks=126 obj#=43151 tim=2580963403

WAIT #3: nam='db file scattered read' ela= 1675 file#=4 block#=984971 blocks=126 obj#=43151 tim=2580973475

WAIT #3: nam='db file scattered read' ela= 1679 file#=4 block#=985099 blocks=126 obj#=43151 tim=2580983501

WAIT #3: nam='db file scattered read' ela= 1680 file#=4 block#=985227 blocks=126 obj#=43151 tim=2580993541

FETCH #3:c=328125,e=374950,p=4655,cr=4668,cu=0,mis=0,r=1,dep=0,og=1,tim=2581001232

WAIT #3: nam='SQL*Net message from client' ela= 321 driver id=1413697536 #bytes=1 p3=0 obj#=43151 tim=2581001710

FETCH #3:c=0,e=2,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=0,tim=2581001768

WAIT #3: nam='SQL*Net message to client' ela= 2 driver id=1413697536 #bytes=1 p3=0 obj#=43151 tim=2581001798

WAIT #3: nam='SQL*Net message from client' ela= 604 driver id=1413697536 #bytes=1 p3=0 obj#=43151 tim=2581002423

STAT #3 id=1 cnt=1 pid=0 pos=1 obj=0 op='SORT AGGREGATE (cr=4668 pr=4655 pw=0 time=374945 us)'

STAT #3 id=2 cnt=2557544 pid=1 pos=1 obj=43151 op='INDEX FAST FULL SCAN X_INV_7 (cr=4668 pr=4655 pw=0 time=2558111 us)'

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

SeanMacGC

Posts: 7

Registered: 10/30/06

Re: Larger vs. Small data block

Posted: Jun 12, 2008 8:00 AM in response to: Charles Hooper
Reply

I see that Mr. xxxxxxxx has removed the above comment from his post to which I had replied.

Indeed Charles, as his rather conspicuous absolute silence on this thread since you made the original comment bears testimony

to too. All very confidence inducing.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 12, 2008 10:57 AM in response to: Charles Hooper
Reply

Again excellent work Charles. Now if we could just get you out here to the coast.

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 12, 2008 11:14 AM in response to: damorgan
Reply

> Again excellent work Charles. Now if we could just

> get you out here to the coast.

Unfortunately, the trace file that I posted makes it hard to see the performance difference that I was trying to highlight. By

increasing the multi-block read by a factor of 4, the disk read performance improved by a factor of 7 to 9. I suspect that the

difference between reading in one read call 1 block compared to reading 128 blocks, there would be an even greater difference.

The TKPFOF output for three select statements - the first matches the trace files that I posted:

DB_FILE_MULTIBLOCK_READ_COUNT=32

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 0.31 0.70 4655 4668 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 0.31 0.71 4655 4668 0 1

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 39

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=4668 pr=4655 pw=0 time=707601 us)

2557544 INDEX FAST FULL SCAN X_INV_7 (cr=4668 pr=4655 pw=0 time=5140073 us)(object id 43151)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 db file sequential read 1 0.01 0.01

 db file scattered read 160 0.01 0.45

 SQL*Net message from client 2 0.00 0.00

DB_FILE_MULTIBLOCK_READ_COUNT=Unset

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.03 0.01 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 0.32 0.37 4655 4668 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 0.35 0.38 4655 4668 0 1

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 39

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=4668 pr=4655 pw=0 time=374945 us)

2557544 INDEX FAST FULL SCAN X_INV_7 (cr=4668 pr=4655 pw=0 time=2558111 us)(object id 43151)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 db file sequential read 1 0.00 0.00

 db file scattered read 52 0.00 0.06

 SQL*Net message from client 2 0.00 0.00

DB_FILE_MULTIBLOCK_READ_COUNT=32

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.01 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 0.14 0.37 2507 2516 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 0.14 0.39 2507 2516 0 1

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 39

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=2516 pr=2507 pw=0 time=379713 us)

1379582 INDEX FAST FULL SCAN X_LT_6 (cr=2516 pr=2507 pw=0 time=10877 us)(object id 43161)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 db file sequential read 1 0.00 0.00

 db file scattered read 92 0.00 0.24

 SQL*Net message from client 2 0.00 0.00

DB_FILE_MULTIBLOCK_READ_COUNT=Unset

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.03 0.01 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 0.18 0.19 2507 2516 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 0.21 0.21 2507 2516 0 1

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 39

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=2516 pr=2507 pw=0 time=199744 us)

1379582 INDEX FAST FULL SCAN X_LT_6 (cr=2516 pr=2507 pw=0 time=528 us)(object id 43161)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 db file sequential read 1 0.00 0.00

 db file scattered read 35 0.00 0.03

 SQL*Net message from client 2 0.00 0.00

DB_FILE_MULTIBLOCK_READ_COUNT=32

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.01 0.02 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 0.15 0.31 2011 2020 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 0.17 0.33 2011 2020 0 1

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 39

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=2020 pr=2011 pw=0 time=313081 us)

1106750 INDEX FAST FULL SCAN X_R_2 (cr=2020 pr=2011 pw=0 time=8673 us)(object id 43287)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 db file sequential read 1 0.00 0.00

 db file scattered read 77 0.00 0.18

 SQL*Net message from client 2 0.00 0.00

DB_FILE_MULTIBLOCK_READ_COUNT=Unset

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.01 0.02 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 2 0.12 0.16 2011 2020 0 1

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 0.14 0.18 2011 2020 0 1

Misses in library cache during parse: 1

Optimizer mode: ALL_ROWS

Parsing user id: 39

Rows Row Source Operation

------- ---

 1 SORT AGGREGATE (cr=2020 pr=2011 pw=0 time=163378 us)

1106750 INDEX FAST FULL SCAN X_R_2 (cr=2020 pr=2011 pw=0 time=760 us)(object id 43287)

Elapsed times include waiting on following events:

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 SQL*Net message to client 2 0.00 0.00

 db file sequential read 1 0.00 0.00

 db file scattered read 32 0.00 0.02

 SQL*Net message from client 2 0.00 0.00

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 12, 2008 1:48 PM in response to: Greg Rahn
Reply

> xxx xxxxxxxx wrote:

> What I found on a database just this week, is that

> ditching the 10.2 MBRC=0 (automatic MBRC tuning) and

> using manual optimization, my client saw a 22%

> throughput improvement.

>

> sp009 wrote:

> Not my call, but i would like you to have a look

> at

> https://metalink.oracle.com/metalink/plsql/f?p=200:27:

> 1190037021398714647::::p27_id,p27_show_header,p27_show

> _help:71475.993,1,1

>
> Charles Hooper wrote:

> As you can see, Oracle dropped from reading 7 or 8

> blocks at a time (the reason is explained in this

> thread) to reading 1 block at a time.

>

> There is a bug on this: bug 5768025

> Setting DB_FILE_MULTIBLOCK_READ_COUNT=0 incorrectly

> results in DB_FILE_MULTIBLOCK_READ_COUNT=1 and does

> not enable self-tuning MBRC.

>

> Workaround: do not set DB_FILE_MULTIBLOCK_READ_COUNT

> as an init.ora parameter

>

> --

> Regards,

>

> Greg Rahn

> http://structureddata.org

Greg,

I see that you updated the meta link thread. Would you mind updating the same stating that "Its been taken care in 10.2.0.4

without any workaround"

Thanks

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 12, 2008 2:36 PM in response to: Charles Hooper
Reply

Charles,

In 10.2.0.4, If you set db_file_multiblock_read_count=0 (Dynamic MBRC),

then Oracle will tend to set maximum value based on OS limit.

If i set db_file_multiblock_read_count as 1 manually , i can see high sequential

read in the tkprof. Also didn't see much performance difference between

db_file_multiblock_read_count=0 and db_file_multiblock_read_count=128.

In fact db_file_multiblock_read_count=128 setting actually reduced the

number of scattered read and the cost nearly same.

Regards,

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 12, 2008 5:39 PM in response to: sp009
Reply

If this parameter is not set explicitly (or is set is 0), the optimizer will use a default value of 8 when costing full table

scans and index fast full scans.

Source:

http://download.oracle.com/docs/cd/B28359_01/server.111/b28274/optimops.htm#BABDECGJ

David_Aldridge

Posts: 97

Registered: 4/22/08

Re: Larger vs. Small data block

Posted: Jun 12, 2008 6:11 PM in response to: damorgan
Reply

... except when it uses mbrc from system statistics though, from what JL was saying.

Niall

Litchfield

Posts: 301

From: Hampshire UK

Registered: 7/4/99

Re: Larger vs. Small data block

Posted: Jun 12, 2008 6:50 PM in response to: David_Aldridge
Reply

> ... except when it uses mbrc from system statistics

> though, from what JL was saying.

exactly correct. Obviously I could illustrate that with scripts, but then the cbo might magically know that there's only one

real person on the system and behave differently. So in the spirit of xxx, I'm just going to claim it with no evidence.

Niall

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 12, 2008 7:51 PM in response to: David_Aldridge
Reply

Can you get the docs correction to Francisco?

David_Aldridge

Posts: 97

Registered: 4/22/08

Re: Larger vs. Small data block

Posted: Jun 12, 2008 8:17 PM in response to: damorgan
Reply

Who is this Francisco of whom you speak? Pretend I've not been paying attention ...

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 13, 2008 1:40 AM in response to: David_Aldridge
Reply

Francisco Abedrabbo. I am assuming you are inside Oracle.

If not let me know and I will send it to him. Thanks.

Niall

Litchfield

Posts: 301

From: Hampshire UK

Registered: 7/4/99

Re: Larger vs. Small data block

Posted: Jun 13, 2008 4:20 AM in response to: damorgan
Reply

Actually I'm not entirely convinced by the wording of the relevant bit of the docs at all. If you look at the section on

workload stats (when mbrc may be gathered by Oracle) at

http://download.oracle.com/docs/cd/B28359_01/server.111/b28274/stats.htm#CIHIEIIA then you find this bit of prose on multi

block read count. .

"In release 10.2, the optimizer uses the value of mbrc when performing full table scans (FTS). The value of

db_file_multiblock_read_count is set to the maximum allowed by the operating system by default. However, the optimizer uses

mbrc=8 for costing. The "real" mbrc is actually somewhere in between since serial multiblock read requests are processed by

the buffer cache and split in two or more requests if some blocks are already pinned in the buffer cache, or when the segment

size is smaller than the read size. The mbrc value gathered as part of workload statistics is thus useful for FTS estimation.

During the gathering process of workload statistics, it is possible that mbrc and mreadtim will not be gathered if no table

scans are performed during serial workloads, as is often the case with OLTP systems. On the other hand, FTS occur frequently

on DSS systems but may run parallel and bypass the buffer cache. In such cases, sreadtim will still be gathered since index

lookup are performed using the buffer cache. If Oracle cannot gather or validate gathered mbrc or mreadtim, but has gathered

sreadtim and cpuspeed, then only sreadtim and cpuspeed will be used for costing. FTS cost will be computed using analytical

algorithm implemented in previous releases. Another alternative to computing mbrc and mreadtim is to force FTS in serial mode

to allow the optimizer to gather the data."

I can't help but feel that that could be clearer. :)

Niall

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 13, 2008 7:20 AM in response to: sp009
Reply

> Charles,

>

> In 10.2.0.4, If you set

> db_file_multiblock_read_count=0 (Dynamic MBRC),

> then Oracle will tend to set maximum value based on

> OS limit.

>

> If i set db_file_multiblock_read_count as 1 manually

> , i can see high sequential

> read in the tkprof. Also didn't see much performance

> difference between

> db_file_multiblock_read_count=0 and

> db_file_multiblock_read_count=128.

> In fact db_file_multiblock_read_count=128 setting

> actually reduced the

> number of scattered read and the cost nearly same.

>

> Regards,

I think that I have to take issue with the broad statement that db_file_multiblock_read_count=0 is the equivalent of "Dynamic

MBRC". I checked the documentation and did not find a statement indicating that to enable automatic calculation of

db_file_multiblock_read_count, db_file_multiblock_read_count should be set to 0 (if that is the definition of "Dynamic MBRC").

There are a couple references in the documentation for Oracle 10.2 that seem to imply a special behavior when that parameter

is set to 0.

If you state that in 10.2.0.4, setting db_file_multiblock_read_count=0 results in automatic calculation of

db_file_multiblock_read_count, then that is a change from what I demonstrated with 10.2.0.2. I will have to take a look at

this, thanks for pointing it out.

The statement in your most recent post (quoted above) seemed to be stating the second of the above cases. Mr. xxxxxxxx's

statement seemed to be non-version specific. Considering how short of time 10.2.0.4 has been available compared with 10.2.0.1,

10.2.0.2, or 10.2.0.3, it would seem that a version qualification of the statement, and also a definition of "Dynamic MBRC"

would have been helpful.

I agree with the statement that db_file_multiblock_read_count=1 results in single block reads, as were found in the portion of

the trace file that I posted. The difference was that I did not set db_file_multiblock_read_count=1, that was a result of

setting db_file_multiblock_read_count=0 to test the effects of that value for the parameter (reported as a bug by Greg Rahn,

and reported several times (in several web sites) as a potential problem by Jonathan Lewis).

Just as I did not set db_file_multiblock_read_count=1, I did not set db_file_multiblock_read_count=128 - that was

automatically set by Oracle on my server when db_file_multiblock_read_count was removed from the spfile and the database was

bounced. You may want to examine why you did not see much performance difference between db_file_multiblock_read_count=0 and

db_file_multiblock_read_count=128, and why (and how much) "db_file_multiblock_read_count=128 setting actually reduced the

number of scattered read and the cost nearly same."

Some starting points for observation of the above:

* I believe that you stated that your database is using a 16KB block size, and 16KB * 128 is what value?

* The maximum read size on most platforms is what value, and how does it compare with the above calculation?

* The extent size of the objects (when you were testing) are what size: 32KB, 64KB, 512KB, 10MB, 100MB? Jonathan Lewis

explained the significance of the extent size in this thread, Greg Rahn confirmed the significance, and I was able to confirm

it through examination of trace files.

* How many of the database blocks were already in the buffer cache when you were testing?

* How many blocks did the raw trace file show that Oracle was reading at one time when db_file_multiblock_read_count was set

to 0 and 128?

* Did you look at a 10053 trace file to determine why the cost was nearly the same when db_file_multiblock_read_count was set

to 0 and 128?

* When db_file_multiblock_read_count was set to 0, what did Oracle automatically set that parameter's value to?

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 13, 2008 9:44 AM in response to: Charles Hooper
Reply

> Some starting points for observation of the above:

> * I believe that you stated that your database is

> using a 16KB block size, and 16KB * 128 is what

> value?

> * The maximum read size on most platforms is what

> value, and how does it compare with the above

> calculation?

> * The extent size of the objects (when you were

> testing) are what size: 32KB, 64KB, 512KB, 10MB,

> 100MB? Jonathan Lewis explained the significance of

> the extent size in this thread, Greg Rahn confirmed

> the significance, and I was able to confirm it

> through examination of trace files.

> * How many of the database blocks were already in the

> buffer cache when you were testing?

> * How many blocks did the raw trace file show that

> Oracle was reading at one time when

> db_file_multiblock_read_count was set to 0 and 128?

> * Did you look at a 10053 trace file to determine why

> the cost was nearly the same when

> db_file_multiblock_read_count was set to 0 and 128?

> * When db_file_multiblock_read_count was set to 0,

> what did Oracle automatically set that parameter's

> value to?

>

> Charles Hooper

> IT Manager/Oracle DBA

> K&M Machine-Fabricating, Inc.

Give me some time, i will post the test case soon

David_Aldridge

Posts: 97

Registered: 4/22/08

Re: Larger vs. Small data block

Posted: Jun 13, 2008 10:16 AM in response to: damorgan
Reply

No, I'm not an Oracle person. I'm still waiting for the personal invite from Larry before considering the move ...

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 13, 2008 1:35 PM in response to: Charles Hooper
Reply

> I think that I have to take issue with the broad

> statement that db_file_multiblock_read_count=0 is the

> equivalent of "Dynamic MBRC". I checked the

> documentation and did not find a statement indicating

> that to enable automatic calculation of

> db_file_multiblock_read_count,

> db_file_multiblock_read_count should be set to 0 (if

> that is the definition of "Dynamic MBRC"). There are

> a couple references in the documentation for Oracle

> 10.2 that seem to imply a special behavior when that

> parameter is set to 0.

See

http://download.oracle.com/docs/cd/B19306_01/server.102/b14211/whatsnew.htm#PFGRF000

http://download.oracle.com/docs/cd/B19306_01/server.102/b14211/optimops.htm#BABDECGJ

Documentation regarding Dynamic MBRC is wrong. If any one set "Dynamic MBRC"

prior to 10.2.0.4.0, means bad performance. Mr. xxxxxxxx is correct, assuming

the version was prior to patch#4, when he said:

> "What I found on a database just this week, is

> that ditching the 10.2 MBRC=0 (automatic MBRC tuning)

> and using manual optimization, my client saw a 22%

> throughput improvement."

Below is the output for Dynamic MBRC for my 2 database in 10.2.0.4.0

SQL>

SQL> Connect / as Sysdba

Connected.

SQL>

SQL> Select * From v$version

 2 /

BANNER

--

Oracle Database 10g Enterprise Edition Release 10.2.0.4.0 - Prod

PL/SQL Release 10.2.0.4.0 - Production

CORE 10.2.0.4.0 Production

TNS for 32-bit Windows: Version 10.2.0.4.0 - Production

NLSRTL Version 10.2.0.4.0 - Production

SQL> Show Parameter db_file_multiblock_read_count

NAME TYPE VALUE

------------------------------------ ----------- ------------------------------

db_file_multiblock_read_count integer 8

SQL>

SQL> Show Parameter db_block_size

NAME TYPE VALUE

------------------------------------ ----------- ------------------------------

db_block_size integer 8192

SQL>

SQL> Alter Session Set db_file_multiblock_read_count=0

 2 /

Session altered.

SQL> Show Parameter db_file_multiblock_read_count

NAME TYPE VALUE

------------------------------------ ----------- ------------------------------

db_file_multiblock_read_count integer 128

SQL>

SQL> Disconnect

Disconnected from Oracle Database 10g Enterprise Edition Release 10.2.0.4.0 - Production

With the Partitioning, OLAP, Data Mining and Real Application Testing options

SQL>

SQL>

SQL> Connect / as Sysdba

Connected.

SQL>

SQL> Select * From v$version

 2 /

BANNER

--

Oracle Database 10g Enterprise Edition Release 10.2.0.4.0 - Prod

PL/SQL Release 10.2.0.4.0 - Production

CORE 10.2.0.4.0 Production

TNS for 32-bit Windows: Version 10.2.0.4.0 - Production

NLSRTL Version 10.2.0.4.0 - Production

SQL> Show Parameter db_file_multiblock_read_count

NAME TYPE VALUE

------------------------------------ ----------- ------------------------------

db_file_multiblock_read_count integer 8

SQL>

SQL> Show Parameter db_block_size

NAME TYPE VALUE

------------------------------------ ----------- ------------------------------

db_block_size integer 16384

SQL>

SQL> Alter Session Set db_file_multiblock_read_count=0

 2 /

Session altered.

SQL> Show Parameter db_file_multiblock_read_count

NAME TYPE VALUE

------------------------------------ ----------- ------------------------------

db_file_multiblock_read_count integer 63

SQL>

SQL> Disconnect

Disconnected from Oracle Database 10g Enterprise Edition Release 10.2.0.4.0 - Production

With the Partitioning, OLAP, Data Mining and Real Application Testing options

SQL>

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 13, 2008 1:38 PM in response to: sp009
Reply

> Give me some time, i will post the test case soon

sp009,

A test case showing what is happening would be great - if for no reason other than to satisfy curiosity about how things work,

and how things may have changed from one version to another.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 13, 2008 2:14 PM in response to: Charles Hooper
Reply

> > Give me some time, i will post the test case soon

>

> sp009,

>

> A test case showing what is happening would be great

> - if for no reason other than to satisfy curiosity

> about how things work, and how things may have

> changed from one version to another.

>

> Charles Hooper

> IT Manager/Oracle DBA

> K&M Machine-Fabricating, Inc.

Charles,

I have 8k and 16k block size database. What test case are you looking for?

db_file_multiblock_read_count = 8k (default) against dynamic in both my database?

sp009

Edited for terminology

Probably I shouldn’t say Dynamic MBRC but Self-Tuning MBRC

Message was edited by:

sp009

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 13, 2008 2:24 PM in response to: sp009
Reply

[nobr]>

> See

> http://download.oracle.com/docs/cd/B19306_01/server.10

> 2/b14211/whatsnew.htm#PFGRF000

The DB_FILE_MULTIBLOCK_READ_COUNT initialization parameter is now automatically tuned to use a default value when this
parameter is not set explicitly

> http://download.oracle.com/docs/cd/B19306_01/server.10

> 2/b14211/optimops.htm#BABDECGJ

>

If this parameter is not set explicitly (or is set is 0), the optimizer will use a default value of 8 when costing full table

scans and index fast full scans.

(My emphasis)

> Documentation regarding Dynamic MBRC is wrong. If any

> one set "Dynamic MBRC" prior to 10.2.0.4.0, means bad

> performance.

The documentation clearly contains a contradiction - which means that anyone reading the manual would want to check what

really happens in the two different sets of circumstances. Enabling dynanamic tuning of the multiblock read count does not

cause bad performance prior to 10.2.0.4; setting the db_file_multiblock_read_count to zero quite probably does.

> Mr. xxxxxxxx is correct, assuming

> the version was prior to patch#4, when he said:

> > "What I found on a database just this week, is

> > that ditching the 10.2 MBRC=0 (automatic MBRC tuning)

> > and using manual optimization, my client saw a 22%

> > throughput improvement."

>

Mr. xxxxxxxx is demonstrating the difference between what he calls the "empirical DBA" and the "scientific DBA".

It doesn't take much effort or thought from then "scentifit DBA" to notice that when you set the db_file_multiblock_read_count

to zero in earlier versions Oracle it magically sets itself to 1. (Here's a note I wrote in May 2007 which happens to pick up

the related details)

On the other hand, the "empirical DBA" would be more inclined to hack in a couple of different manual settings, see a couple

of queries do faster tablescans, and say: "automatic tuning of the db_file_multiblock_read_count doesn't work".

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk[/nobr]

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 13, 2008 2:38 PM in response to: sp009
Reply

> > A test case showing what is happening would be

> great

> > - if for no reason other than to satisfy curiosity

> > about how things work, and how things may have

> > changed from one version to another.

> Charles,

>

> I have 8k and 16k block size database. What test case

> are you looking for?

>

> db_file_multiblock_read_count = 8k (default) against

> dynamic in both my database?

>

> sp009

sp009,

I believe that I was in the process of proof-reading my post when you submitted your SQL*Plus output showing that what happens

when DB_FILE_MULTIBLOCK_READ_COUNT is set to 0 at the session level. I tried that same set of commands on Oracle 10.2.0.2:

SQL> ALTER SESSION SET DB_FILE_MULTIBLOCK_READ_COUNT=0

 2 /

Session altered.

Elapsed: 00:00:01.01

SQL> SHOW PARAMETER DB_FILE_MULTIBLOCK_READ_COUNT

NAME TYPE VALUE

------------------------------------ ----------- -----

db_file_multiblock_read_count integer 1

On 10.2.0.2, changing the parameter to 0 causes it to change to 1. It is good to see that the effect of this parameter change

has been improved.

Looking at one of the links that you provided:

http://download.oracle.com/docs/cd/B19306_01/server.102/b14211/whatsnew.htm#PFGRF000

"The DB_FILE_MULTIBLOCK_READ_COUNT initialization parameter is now automatically tuned to use a default value when this
parameter is not set explicitly." This quote does not suggest setting the value to 0 to unset the value of

DB_FILE_MULTIBLOCK_READ_COUNT, although that appears to now be the behavior on Oracle 10.2.0.4.

Looking at the second link that you provided:

http://download.oracle.com/docs/cd/B19306_01/server.102/b14211/optimops.htm#BABDECGJ

"The optimizer uses the value of DB_FILE_MULTIBLOCK_READ_COUNT to cost full table scans and index fast full scans. Larger

values result in a cheaper cost for full table scans and can result in the optimizer choosing a full table scan over an index

scan. If this parameter is not set explicitly (or is set is 0), the optimizer will use a default value of 8 when costing full

table scans and index fast full scans." I believe that quote, and a comment on that quote is already present in this thread

regarding the accuracy of this particular paragraph.

Thanks for the information that you provided. I previously suggested the following for a test case to see why performance may

have changed when the value of DB_FILE_MULTIBLOCK_READ_COUNT was automatically set (your answer to the last bullet point

helped):

Some starting points for observation of the above:

* I believe that you stated that your database is using a 16KB block size, and 16KB * 128 is what value?

* The maximum read size on most platforms is what value, and how does it compare with the above calculation?

* The extent size of the objects (when you were testing) are what size: 32KB, 64KB, 512KB, 10MB, 100MB? Jonathan Lewis

explained the significance of the extent size in this thread, Greg Rahn confirmed the significance, and I was able to confirm

it through examination of trace files.

* How many of the database blocks were already in the buffer cache when you were testing?

* How many blocks did the raw trace file show that Oracle was reading at one time when db_file_multiblock_read_count was set

to 0 and 128?

* Did you look at a 10053 trace file to determine why the cost was nearly the same when db_file_multiblock_read_count was set

to 0 and 128?

* When db_file_multiblock_read_count was set to 0, what did Oracle automatically set that parameter's value to?

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Steve

Karam

Posts: 126

From: Virginia Beach, VA

Registered: 9/14/05

Re: Larger vs. Small data block

Posted: Jun 13, 2008 5:18 PM in response to: user619401
Reply

For all of you who have been following and replying on this thread, I would ask that you look at a blog article I made today

regarding a recent situation. The link is:

http://www.oraclealchemist.com/oracle/hey-guys-does-size-matter/

As I mention in the article, I have not finished analyzing all of the collected data from this situation, but I would still

appreciate any commentary, questions, etc.

benprusinski

Posts: 207

From: San Diego, CA

Registered: 2/1/00

Re: Larger vs. Small data block

Posted: Jun 13, 2008 6:12 PM in response to: user619401
Reply

Hi all,

My experiences have been that using different block sizes can make a difference.

For a past customer a large financial company, we improved database performance by increasing block size from 8k blocksize to

16k blocksize.

Performance for nightly data loads went down from 22 hours to 6 hours when we increased the database block size.

Full table scans benefit from larger block size based on what I seen in a data warehouse environment. Even the Oracle Database

10g Performance Tuning Guide mentions this in Chapter 8, Pages 8-1 through 8-10 that large block sizes are recommended for

data warehouse environments and smaller block sizes usually are best for OLTP database environments with Oracle.

In fact when I took the Oracle 9i Database Performance Tuning course years ago at Oracle University the course materials and

instructor recommend that block sizes affect performance!

There are always rare exceptions just like a broken clock can be right twice a day.

However I prefer to stick to guidelines and find the solutions that work for majority of customers that I deal with rather

than the 1 out of a million exceptions.

Regards,

Ben Prusinski

My Blog on Database Technology

http://oracle-magician.blogspot.com/

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 13, 2008 11:55 PM in response to: Steve Karam
Reply

One thought that immediately comes to mind is that your export/import changed the data in ways previously discussed by

Jonathan Lewis.

A better test would be to take a single export and then import it into separate but equal databases with no difference other

than the block size.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 14, 2008 12:03 AM in response to: benprusinski
Reply

This is what I don't like about unscientific, anecdotal, information.

Steve Karam reports:

"By going from a 16k blocksize to a 4k blocksize with all other things being equal, we experienced roughly a twenty times

improvement."

and you report:

"For a past customer a large financial company, we improved database performance by increasing block size from 8k blocksize to

16k blocksize."

So one of you gets improved performance using smaller blocks the other by using larger blocks. From this a DBA trying to make

a decision on what to do with their system should draw what conclusion? Throw a coin in the air and call heads or tails?

The lesson I draw is that under specific conditions with specific workloads it is possible to achieve differences,

unpredictable differences, by arbitrarily changing the block size.

Thus the only thing for a DBA to do, given time and bandwidth, is to build their application using multiple blocksizes and

test each and every one. I don't know anyone in a corporate environment with that luxury.

And while stating this it should also be noted that while both your test and Steve's relate to a single query ... not to the

entire workload on a production system. The only lesson learned here is that there are no silver bullets.

Hans

Forbrich

Posts: 7,483

From: AB, Canada

Registered: 3/13/99

Re: Larger vs. Small data block

Posted: Jun 14, 2008 1:01 AM in response to: benprusinski
Reply

Hi Ben,

Want to thank you and Steve for providing your stories. Additional anecdotal data points can be useful, just like the Oracle

one above.

Conclusion so far - people still need to benchmark in their own environment. But I like the fact that we now have 3

referenceable stories - two that say a change in block size has a noticeable effect (at least for specific key operations),

and one for OLTP that leaves block size at the default size.

> Full table scans benefit from larger block size based on

> what I seen in a data warehouse environment. Even the

> Oracle Database 10g Performance Tuning Guide mentions

> this in Chapter 8, Pages 8-1 through 8-10 that large

> block sizes are recommended for data warehouse

> environments and smaller block sizes usually are best

> for OLTP database environments with Oracle.

Your comment around the Performance tuning guide is interesting. I've looked several times and I seem to keep missing miss the

'large block sizes are recommended ...' and 'smaller block sizes usually are best ...' comments. What I did find was:

"8.2.6 Choosing Data Block Size

A block size of 8K is optimal for most systems. However, OLTP systems occasionally use smaller block sizes and DSS systems

occasionally use larger block sizes. "

Perhaps you could help me find the 'recommended' and 'usually best' qualifiers.

As for the Oracle9i class material, on Page 15-32 we read:

Block Size

Data warehouse applications typically perform many table scans; therefore consider a higher value for the block size

parameter.

but that has been removed in the 10g course, except for a brief statement in the summary about Block SIze in chapter 15. In

that it definitely states the normal OLTP environment is default block size, although ROLAP might benefit from increasing it.

(MOLAP is a completely different beast, being BLOB based.)

Steve

Karam

Posts: 126

From: Virginia Beach, VA

Registered: 9/14/05

Re: Larger vs. Small data block

Posted: Jun 14, 2008 1:20 AM in response to: damorgan
Reply

> So one of you gets improved performance using smaller

> blocks the other by using larger blocks. From this a

> DBA trying to make a decision on what to do with

> their system should draw what conclusion? Throw a

> coin in the air and call heads or tails?

Which is why I say that there is no conclusion as of yet. I would never say "small blocks are better, und das ist alles." But

acknowledging that yes, block size CAN produce a (possibly sizeable) difference, we can make sure to gather information based

upon block size as a variable in the future.

Is it not worthwhile to share our experiences, all of our experiences, in the hopes that we may find a common thread? If it is

necessary to add a disclaimer saying "this proves nothing definitively" then so be it. But just noticing the contradictions

between my test and Ben's test is a start. You call it unpredictable, I call it "Steve Results != Ben Results", which is the

start of a formula. Now we drill down and find out why. Are they the same Oracle version? What parameters are different? How

is his I/O subsystem configured? And so on.

> The lesson I draw is that under specific conditions

> with specific workloads it is possible to achieve

> differences, unpredictable differences, by

> arbitrarily changing the block size.

At the beginning of this thread you said "If you implement any block size other than 8K your benefits, if any, will be

marginal and your risks greater." Well, I just saw a situation where all application queries ran the same if not better, and

DML performance increased between 20 and 270 times. I'm not saying it's perfect or conclusive, but isn't it worth considering

and investigating?

> Thus the only thing for a DBA to do, given time and

> bandwidth, is to build their application using

> multiple blocksizes and test each and every one. I

> don't know anyone in a corporate environment with

> that luxury.

Yes, you're right, that would not be possible in nearly any case. But as I mentioned before, if we discuss experiences

(including those that go against conventional wisdom), we can hopefully start to notice trends. If, after a few tests, we

disregard all future findings because it was found irrelevant at some point, we may miss out on something worthwhile.

> And while stating this it should also be noted that

> while both your test and Steve's relate to a single

> query ... not to the entire workload on a production

> system. The only lesson learned here is that there

> are no silver bullets.

Okay, so there are no silver bullets that apply 100% of the time to 100% of systems, I get that. Everything is relative,

right? But let's say something works for you 20% of the time; it is still worth investigating the boundaries for a successful

run rather than disregarding it entirely. Isn't it?

Maybe I'm too much of an idealist. Maybe that's why I chose the "Oracle Alchemist" nom de plume. I'm very aware of the need to

prove, the need to find root cause, and the need to find the 'proper' solution. But nothing says a hunch can't help you get

there. To each their own.

Steve

Karam

Posts: 126

From: Virginia Beach, VA

Registered: 9/14/05

Re: Larger vs. Small data block

Posted: Jun 14, 2008 1:22 AM in response to: Hans Forbrich
Reply

> But I like the fact that we

> now have 3 referenceable stories - two that say a

> change in block size has a noticeable effect (at

> least for specific key operations), and one for OLTP

> that leaves block size at the default size.

Exactly!

Hemant

K

Chitale

Posts: 1,259

Registered: 11/6/98

Re: Larger vs. Small data block

Posted: Jun 14, 2008 3:26 AM in response to: Hans Forbrich
Reply

>>"8.2.6 Choosing Data Block Size

>>

>>A block size of 8K is optimal for most systems. However, OLTP systems >>occasionally use smaller block sizes and DSS systems

occasionally use larger block >>sizes. "

Once upon a time, the default block size was 2K. Right upto 8i, Oracle would

create a database with a 2K block size. We had to manually set db_block_size=8192

before running an SQL script to CREATE DATABASE.

So, now, most people think that an 8K block size is optimal. What happened in the

intervening years ? Technology changed and 8K reads and multiblock reads

of 1MB were possible. CPU speeds improved and latch time and updating rows

in a block became faster (the main issue with larger block sizes was contention

amongst sessions for rows in the same block). Those improvements made 8K

block sizes sensible. Oracle and some DataWarehouse DBAs have seen

environments where 8K performed better in the 2K days. Surely, there are

environments where 16K performs better in the 8K days ?

Billy

Verreynne

Posts: 6,628

Registered: 5/27/99

Re: Larger vs. Small data block

Posted: Jun 14, 2008 8:03 AM in response to: benprusinski
Reply

> Performance for nightly data loads went down from 22 hours to 6

> hours when we increased the database block size.

Care to back that up with something tangible?

If not, then your claim is no different than the following.. that faith in, and prayer to, the Flying Spaghetti Monster,

guarantees an increase in Oracle performance.

SQL> set timing on

SQL> select count(*) from all_objects;

 COUNT(*)

 10332

Elapsed: 00:00:04.61

SQL> -- praying hard to the Spaghedeity

SQL> select count(*) from all_objects;

 COUNT(*)

 10332

Elapsed: 00:00:00.29

SQL> -- it worked!! as usual - praying to the Spaghedeity increased performce again!!

SQL> -- praised be His Noodly Goodness!! Amen.

SQL>

No offence.. but I'm kind of sick and tired of the xxxxxxxx style of faith-based Oracle performance claims.

You claim that "something" improves Oracle performance? THEN BACK IT UP WITH ACTUAL EVIDENCE AND PROOF!

Or else just shut up.

PS. To His Noodly Goodness. I know You said "I’d really rather you didn’t challenge the bigoted, misogynistic, hateful ideas

of others on an empty stomach. Eat, then go after the bitches". I have not only eaten. I've had 2 (or has it been 3 already?)

mugs of coffee and a very serious Mug & Bean Cuppachino. My lead pipe has been waxed shiny. I'm ready to go after them.

Billy

Verreynne

Posts: 6,628

Registered: 5/27/99

Re: Larger vs. Small data block

Posted: Jun 14, 2008 8:24 AM in response to: Billy Verreynne
Reply

Now I know someone with warm fuzzies to all mankind and especially faith-based Oracle performance tuning that deems empirical

observation and anecdotal evidence to suffice for the unwashed (non official Oracle DBA) masses, will take me on.

So to preempt that and save that poor sod from whacking his (or her or it's) keyboard in churning out a "brilliant" response

to me...

All I want is *something* to back up your claim. Like I/O was reduced by 80% because of ABC. Slow random single block reads

were replaced by fast multi-block sequential reads. I/O thruput was improved because of XYZ.

Throw me a damn bone please if you do not want me and my lead pipe to go after yours.

Thanks! :-)

oradba

Posts: 5,591

From: Germany

Registered: 9/15/00

Re: Larger vs. Small data block

Posted: Jun 14, 2008 8:25 AM in response to: Billy Verreynne
Reply

IMO salary increase is much more important than blocksize increase *LOL*

(I think this thread is ready for Guinness Worldrecords very soon!

http://www.guinnessworldrecords.com/default.aspx)

Werner

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 14, 2008 9:24 AM in response to: Steve Karam
Reply

Your change was to one query at one point in time. How did the change affect the entire system for all workloads? How did the

system perform three months later? Block sizes are not something you can arbitrarily change like, for example, an adjustment

to cursor sharing.

Also, if performance changed it changed for a reason. Which metric(s) changed, or how did the plan change, such that

performance improved. Please be specific.

My testing, under rigorous conditions, has shown marginal differences except in contrived conditions. We've not seen your

query and its trace so we have no reason to believe it is not a special case or that it is not. We don't know if the next

point-release patch caused a change that might have not happened with a standard 8K block. What we have, not to in any way

denigrate your work or the anecdotal stories of others, is roughly equivalent to "I put ice cubes under my armpits and lived

to be 100." Ok but was it the ice cubes that did it? I remain wholly unconvinced that in the vast majority of situations with

the vast majority of applications is makes a measurable and sustained difference.

Hans

Forbrich

Posts: 7,483

From: AB, Canada

Registered: 3/13/99

Re: Larger vs. Small data block

Posted: Jun 14, 2008 9:30 AM in response to: Hemant K Chitale
Reply

> >>"8.2.6 Choosing Data Block Size

> >>

> >>A block size of 8K is optimal for most systems. However, OLTP systems

> >>occasionally use smaller block sizes and DSS systems occasionally use larger

> >> block sizes. "

>

...

> So, now, most people think that an 8K block size is optimal.

Not sure where your get 'most people' from.

Just so we are clear, I copied the 'optimal' information directly from the Performance Tuning manual. (The quote marks

indicate I am quoting ... not putting words in anyone's mouth.<g>)

> What happened in the intervening years ? Technology changed and 8K reads

> and multiblock reads of 1MB were possible. CPU speeds improved and latch

> time and updating rows in a block became faster (the main issue with larger

> block sizes was contention amongst sessions for rows in the same block). Those

> improvements made 8K block sizes sensible. Oracle and some DataWarehouse

> DBAs have seen environments where 8K performed better in the 2K

> days. Surely, there are environments where 16K performs better in the 8K days ?

Yes, the Performance Tuning manual, in the section I references (and provided a link to) supports exactly this.

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 14, 2008 9:46 AM in response to: Steve Karam
Reply

> For all of you who have been following and replying

> on this thread, I would ask that you look at a blog

> article I made today regarding a recent situation.

> The link is:

>

> http://www.oraclealchemist.com/oracle/hey-guys-does-si

> ze-matter/

>

> As I mention in the article, I have not finished

> analyzing all of the collected data from this

> situation, but I would still appreciate any

> commentary, questions, etc.

Steve,

Your blog entry is an interesting write up - thanks for sharing. I read through it several times, asking myself if there is

any possible other explanation than the change in the block size - or is there anything that supports the performance change

due to the change in the block size. I did not come up with much after about 2 hours looking at what was written.

Below are my comments, questions, and efforts at shooting in the dark. Someone with more experience might be able to construct

a better list:

* Different plans on SYS owned objects, is it possible that statistics on SYS owned objects were collected in one of the

databases, but not the other? (Bug No 3919772 for 9.2.0.5 might contain a useful explanation)

* Did both databases have locally managed or dictionary managed tablespaces?

* Is it possible that the temp tablespace in the 16KB block database was created as a permanent tablespace?

* The 16KB and 4KB database instances existed at the same time on the server - so they did not using the same areas of the

disks (it can make a difference).

* Were the trace files manually examined, or sent through TKPROF? What wait events did you see in the trace files?

* Were there any indexes on the two column table?

* Is there a trigger or foreign key on the column being updated?

* How does the redo generation compare between the two databases - is it possible that the 16KB block size database was

writing the entire 16KB block to the redo logs, while the 4KB database only wrote the before and after images of changes to

the log files (for example, a hot backup using ALTER TABLESPACE x BEGIN BACKUP was started)?

* Reference Bug No 4260477 (reported in 9.2.0.5, fixed in 10.2), indicates that there are problems with inserting/deleting

(and possibly updating) a large number of rows in a single block within a single transaction with 32KB block size. It might be

interesting to see if it also applies to a table with 2 columns in a 16KB block size tablespace.

* It might be interesting to examine memory accesses. Due to memory latencies and the time difference to transfer data through

the bus to the CPU, a 4KB random memory read will complete faster than a 16KB random memory read. If nearly every row being

updated required in a different 16KB block(s) to be read from system memory, that might lead to some of the performance

difference. More of these random blocks will fit into the lower latency L1, L2, and L3 caches on the CPUs (it might be

intesting to see if the 8 CPUs caused problems).

* It appears that DB_BLOCK_CHECKING checks the entire block during an insert or update:

http://download.oracle.com/docs/cd/B10500_01/server.920/a96536/ch135.htm#1015830

"Oracle checks a block by going through the data on the block, making sure it is self-consistent. Block checking can often

prevent memory and data corruption. Block checking typically causes 1% to 10% overhead, depending on workload. The more

updates or inserts in a workload, the more expensive it is to turn on block checking. You should set DB_BLOCK_CHECKING to true

if the performance overhead is acceptable."

* With a consistent 128KB extent size (segment size?), what was the setting for DB_FILE_MULTIBLOCK_READ_COUNT? "Comparing the

initialization parameters between production and development showed the exact same parameters, except that the upcoming

production box was using a 16k block size and development was using a 4k block size." "Explain plans were checked, trace files

examined, and not much popped up except that the production machine was attempting larger I/Os during the update and was

consequently taking much longer." There might be something here, is it possible to list the initialization parameters?

* You found a couple OS settings that were causing problems - could it be that there were other OS settings that were not

quite right?

* Why did you select to change from a 16KB block size to a 4KB block size, and not something else such as 32KB or 8KB?

* The export and import process may have had a big effect. Did you pre-size the new data files large enough to contain the

expected data, or create them small and allow them to grow as needed?

* Is it possible that the large number of CPUs and limited number of disks contributed to the problem?

It is interesting to ask if the change in the block size was the only change.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Hemant

K

Chitale

Posts: 1,259

Registered: 11/6/98

Re: Larger vs. Small data block

Posted: Jun 14, 2008 10:08 AM in response to: Hans Forbrich
Reply

"most people" would mean the Documentation and the majority of "experts" (those

with more than a few years of experience *and* on different platforms and for

different applications) in their opinions expressed on forums.oracle.com or email

discussion lists or other internet sites.

(and, yes, I acknowledge that you quoted from the Documentation).

My point is just as technological changes made 8K better sense than 2K, in some

applications (ie usages of oracle) a different block size may well make sense.

Probably, multiple block sizes within the same database are better for specific

implementations (other than the normally bandied "transportable tablespaces").

Who knows, 5 years from now, 16K might become the consensus.

So, we may well be bettter of qualifying "universal truths".

Steve

Karam

Posts: 126

From: Virginia Beach, VA

Registered: 9/14/05

Re: Larger vs. Small data block

Posted: Jun 14, 2008 10:46 AM in response to: damorgan
Reply

> Also, if performance change it changed for a reason.

> Which metric(s) changed, or how did the plan change,

> such that performance improved. Please be specific.

I agree, and that's why I said that I am not done going through the results that I have. Here are some differences I've

noticed thus far:

On the 16k blocksize instance, this occurred 53 times:

PARSING IN CURSOR #2 len=36 dep=1 uid=0 oct=3 lid=0 tim=1184884649414850 hv=1254950678 ad='cdf837a8'

select file# from file$ where ts#=:1

END OF STMT

PARSE #2:c=0,e=89,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,tim=1184884649414840

EXEC #2:c=1000,e=63,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,tim=1184884649415042

FETCH #2:c=0,e=42,p=0,cr=3,cu=0,mis=0,r=1,dep=1,og=4,tim=1184884649415104

FETCH #2:c=0,e=5,p=0,cr=1,cu=0,mis=0,r=1,dep=1,og=4,tim=1184884649415127

FETCH #2:c=0,e=5,p=0,cr=1,cu=0,mis=0,r=0,dep=1,og=4,tim=1184884649415150

STAT #2 id=1 cnt=2 pid=0 pos=1 obj=17 op='TABLE ACCESS FULL FILE$ '

The final UPDATE is seen here:

EXEC #1:c=1822034009,e=1779788042,p=768,cr=1541885,cu=446195350,mis=0,r=829484,dep=0,og=4,tim=1184886221334077

STAT #1 id=1 cnt=0 pid=0 pos=1 obj=0 op='UPDATE '

STAT #1 id=2 cnt=829484 pid=1 pos=1 obj=30263 op='TABLE ACCESS FULL ***** '

XCTEND rlbk=0, rd_only=0

On the 4k blocksize instance, FILE$ access was done using the FILE_I2 index, and it occurred 518 times:

PARSING IN CURSOR #2 len=36 dep=1 uid=0 oct=3 lid=0 tim=1184883784927327 hv=1254950678 ad='d0ee3818'

select file# from file$ where ts#=:1

END OF STMT

PARSE #2:c=0,e=25,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,tim=1184883784927324

EXEC #2:c=0,e=26,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,tim=1184883784927407

FETCH #2:c=0,e=14,p=0,cr=2,cu=0,mis=0,r=1,dep=1,og=4,tim=1184883784927437

FETCH #2:c=0,e=4,p=0,cr=1,cu=0,mis=0,r=0,dep=1,og=4,tim=1184883784927457

STAT #2 id=1 cnt=1 pid=0 pos=1 obj=17 op='TABLE ACCESS BY INDEX ROWID FILE$ '

STAT #2 id=2 cnt=1 pid=1 pos=1 obj=42 op='INDEX RANGE SCAN I_FILE2 '

The final update on the 4k environment looks somewhat the same, but much faster:

EXEC #1:c=8924643,e=10332483,p=0,cr=12681,cu=2219343,mis=0,r=829484,dep=0,og=4,tim=1184883857599857

STAT #1 id=1 cnt=0 pid=0 pos=1 obj=0 op='UPDATE '

STAT #1 id=2 cnt=829484 pid=1 pos=1 obj=27448 op='TABLE ACCESS FULL ***** '

XCTEND rlbk=0, rd_only=0

I have yet to fully explore all I/O sizing information beyond what the customer has disclosed. As noted in the documentation

for 9i, since this is a 9i system (http://download.oracle.com/docs/cd/B10501_01/server.920/a96533/iodesign.htm#33483), this

could be an issue of I/O size.

Steve

Karam

Posts: 126

From: Virginia Beach, VA

Registered: 9/14/05

Re: Larger vs. Small data block

Posted: Jun 14, 2008 11:06 AM in response to: Charles Hooper
Reply

Charles, thank you, and great questions all. I'm going to answer your questions without quoting the original to save on space.

Hopefully I get the numbering right. ;)

* I had gathered against both

* Local

* No

* True

* Working on that

* No

* No

* Not possible, v$backup was consulted

* Good call, I'll check that bug out

* This would definitely be interesting, but do you really think it would result in that much of a difference?

* Yes, the client has decided to keep it on. This is when you ask yourself, do you feel lucky? Well, do ya?

* The DBFMRC was tested at 8 and 16 on both environments, but I'm not giving up on that parameter yet either.

* It could be! That's why I'm not ready to say anything conclusively yet.

* Their development system performed much better, and the only real difference was a 4k blocksize. It was worth seeing if that

WAS the difference. If we had gone to a 4k blocksize on the poorly performing system, and everything was the same as dev (but

slower), we would be able to disregard blocksize as a factor and focus on other things.

* Created them small and allowed them to grow as needed. I am planning on doing a new test with freshly imported tables on

both instances if possible. See my note below, this was for the exp/imp test, but there were others.

* Perhaps. This is my current line of thought when looking into this.

Just one other note...before testing a new instance I tried creating a 4k blocksize tablespace in the 16k instance. I did a

CTAS to the new (4k) tablespace and a CTAS to another table in a normal tablespace. The results were consistent, the 16k

blockszie tablespace took roughly 40 minutes during that test, the 4k blocksize tablespace took roughly 2.5 minutes. That's

why I don't think it was an exp/imp issue at this point.

Steve

Karam

Posts: 126

From: Virginia Beach, VA

Registered: 9/14/05

Re: Larger vs. Small data block

Posted: Jun 14, 2008 11:12 AM in response to: Billy Verreynne
Reply

Wow, if I had a dime every time a crazed spaghetti worshiper threatened to come after me with a lead pipe on a technical forum

I'd have...

1 dime.

benprusinski

Posts: 207

From: San Diego, CA

Registered: 2/1/00

Re: Larger vs. Small data block

Posted: Jun 14, 2008 12:16 PM in response to: Billy Verreynne
Reply

>>>> Care to back that up with something tangible?

Due to NDA and confidential nature of the data for the past client, I cannot disclose the actual data and test results and it

was a few years ago. Tell ya what, I am going to create some test cases just for you Billy Boy to make you happy when I get a

free moment.

But it will not be right this second and making rude comments to others on this forum is pretty disrespectful so I am not in a

rush to drop everything and do the testing right this second.

Cheers,

Ben

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 14, 2008 12:33 PM in response to: Steve Karam
Reply

> EXEC #1:c=1822034009,e=1779788042,p=768,cr=1541885,cu=446195350,mis=0,r=829484,dep=0,og=4,tim=1184886221334077

Unless you've uncovered an exotic bug, I don't think this has anything to do with I/O. You appear to have done virtually no

I/O, and (allowing for granularity errors) you have CPU time = elapsed time.

The anomaly is the huge number of current gets (cu=446 million). Your cu count should only be slightly larger than the number

of row entries update (where row entries also has to allow for index updates - were there any indexes on the table, and were

any of them updated at the same time: the statistics on the 4K test suggest there may have been one that was subject to

updates).

I would look at the state of the index (if there is one), and think about effects of delayed block cleanout. (There is an

anomaly with excessive delayed block cleanout on large tablescans that could be responsible for some of your overhead - it

would be accompanied by excessive redo generation).

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Steve

Karam

Posts: 126

From: Virginia Beach, VA

Registered: 9/14/05

Re: Larger vs. Small data block

Posted: Jun 14, 2008 1:09 PM in response to: Jonathan Lewis
Reply

> Unless you've uncovered an exotic bug, I don't think

> this has anything to do with I/O. You appear to have

> done virtually no I/O, and (allowing for granularity

> errors) you have CPU time = elapsed time.

That's consistent with what I've seen. There was virtually 0 I/O contention/usage at the time of the run.

> The anomaly is the huge number of current gets

> (cu=446 million). Your cu count should only be

> slightly larger than the number of row entries update

> (where row entries also has to allow for index

> updates - were there any indexes on the table, and

> were any of them updated at the same time: the

> statistics on the 4K test suggest there may have been

> one that was subject to updates).

There we no indexes on either test table.

> I would look at the state of the index (if there is

> one), and think about effects of delayed block

> cleanout. (There is an anomaly with excessive

> delayed block cleanout on large tablescans that could

> be responsible for some of your overhead - it would

> be accompanied by excessive redo generation).

As a matter of fact, on the 16k blocksize there were a fair amount of log file switch completion waits appearing here and

there.

The observations from you and Charles have prompted me to take another look at the objects in question to make sure there are

no inconsistencies that I might have missed on the first go-round. If I notice anything out of the ordinary I'll post back (at

least so far as I can under the contract).

Hans

Forbrich

Posts: 7,483

From: AB, Canada

Registered: 3/13/99

Re: Larger vs. Small data block

Posted: Jun 14, 2008 1:13 PM in response to: Hemant K Chitale
Reply

> Who knows, 5 years from now, 16K might become the consensus.

The block size, and everything else we set, is based on stated and unstated (and in some cases, unknown) assumptions.

>

> So, we may well be bettter of qualifying "universal truths".

In 5 years, we'll probably have Oracle 12e. The technology and the size of disk/memory/CPU cache/whatever will have changed

sufficiently that the assumptions will no longer be valid.

So the next set of myths are underway.

oradba

Posts: 5,591

From: Germany

Registered: 9/15/00

Re: Larger vs. Small data block

Posted: Jun 14, 2008 2:50 PM in response to: Hans Forbrich
Reply

Honni soit qui mal y pense

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 14, 2008 3:27 PM in response to: Steve Karam
Reply

Steve,

* It might be interesting to examine memory accesses. Due to memory latencies and the time difference to transfer data through

the bus to the CPU, a 4KB random memory read will complete faster than a 16KB random memory read. If nearly every row being

updated required in a different 16KB block(s) to be read from system memory, that might lead to some of the performance

difference. More of these random blocks will fit into the lower latency L1, L2, and L3 caches on the CPUs (it might be

intesting to see if the 8 CPUs caused problems).

> * This would definitely be interesting, but do you

> really think it would result in that much of a

> difference?

I had a little free time one day and starting running some calculations. From one of my Usenet posts, just running numbers

(assumes 0 memory access latency):

Interesting fun with mathematics, which may not be entirely relevant.

On a computer with a computer marketed as having a 1333MHz bus speed,

using 333MHz quad pumped dual channel memory chips, each memory clock

cycle retrieves up to 32 bytes in 0.000000003003003 seconds (maximum

transfer speed of 10,162.35 MB per second), and the CPU core will wait

for this duration on every memory access. A standard 8KB block

requires a minimum of 256 memory clock cycles to be read, resulting in

a minimum delay of 0.000000768768768 seconds to read an 8KB block from

system memory. If you require the computer to perform 180,000 8KB

reads (assuming the data is not cached in the CPU registers, L1, L2,

or L3 caches), it will take a minimum of 0.138 seconds (consistent

reads of 8KB blocks might take 5-10 times longer). What seems like a

simple problem becomes a bit complicated when you dig into the details.

Exploring latency of L1, L2, and L3 caches on a soon to be released Intel CPU (Nehalem):

http://www.anandtech.com/cpuchipsets/intel/showdoc.aspx?i=3326&p=5

CPU / CPU-Z Latency L1 Cache L2 Cache L3 Cache

Nehalem (2.66GHz) 4 cycles 11 cycles 39 cycles

Core 2 Quad Q9450 - Penryn - (2.66GHz) 3 cycles 15 cycles N/A

Exploring the latency of system memory access:

http://www.extremetech.com/article2/0,2845,2218447,00.asp

Memory read speeds

http://www.extremetech.com/print_article2/0,1217,a%253D133743,00.asp

Does RAM Latency Matter

The effects of memory access latency might be visible in the trace file extracts that you posted of the dep=1 recursive calls:

16KB

 tim= D

 0.00000 PARSING IN CURSOR #2 len=36 dep=1 uid=0 oct=3 lid=0 tim=1184884649414850 hv=1254950678 ad='cdf837a8'

 select file# from file$ where ts#=:1

 END OF STMT

-0.00001 PARSE #2:c=0,e=89,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,tim=1184884649414840

 0.00019 EXEC #2:c=1000,e=63,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,tim=1184884649415042

 0.00025 FETCH #2:c=0,e=42,p=0,cr=3,cu=0,mis=0,r=1,dep=1,og=4,tim=1184884649415104

 0.00027 FETCH #2:c=0,e=5,p=0,cr=1,cu=0,mis=0,r=1,dep=1,og=4,tim=1184884649415127

 0.00030 FETCH #2:c=0,e=5,p=0,cr=1,cu=0,mis=0,r=0,dep=1,og=4,tim=1184884649415150

 STAT #2 id=1 cnt=2 pid=0 pos=1 obj=17 op='TABLE ACCESS FULL FILE$

4KB

 tim= D

 0.00000 PARSING IN CURSOR #2 len=36 dep=1 uid=0 oct=3 lid=0 tim=1184883784927327 hv=1254950678 ad='d0ee3818'

 select file# from file$ where ts#=:1

 END OF STMT

 0.00000 PARSE #2:c=0,e=25,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,tim=1184883784927324

 0.00008 EXEC #2:c=0,e=26,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,tim=1184883784927407

 0.00011 FETCH #2:c=0,e=14,p=0,cr=2,cu=0,mis=0,r=1,dep=1,og=4,tim=1184883784927437

 0.00013 FETCH #2:c=0,e=4,p=0,cr=1,cu=0,mis=0,r=0,dep=1,og=4,tim=1184883784927457

 STAT #2 id=1 cnt=1 pid=0 pos=1 obj=17 op='TABLE ACCESS BY INDEX ROWID FILE$ '

 STAT #2 id=2 cnt=1 pid=1 pos=1 obj=42 op='INDEX RANGE SCAN I_FILE2 '

Note that the final tim= D value for the 16KB trace is roughly 3 times the value of the final tim= D value for the 4KB trace.

I can't say whether or not this is due to memory access latency, but it is interesting to see that the tim= D value on the

EXEC line for the 16KB trace is twice that for the 4KB trace.

What might be interesting is the line containing "c=1000,e=63". Considering that there are 8 CPUs, and the c= value is about

16 times greater than the e= value - I thought in such a situation, the maximum value of any c= value is the e= value

multiplied by the number of CPUs. I could be wrong. It might have been helpful to have captured the 10046 trace file at level

8 or 12 to determine what wait events may have contributed

Note that memory latency is not the only problem. As Jonathan pointed out, the consistent reads plus the current reads is

447,737,235 in the 16KB database, but only 2,232,024 in the 4KB database. At the maximum memory speed (no latency) per my

Usenet post, it would take 688 seconds (11.4 minutes) to read that number of 16KB blocks, compared with 0.85 seconds to read

that number of 4KB blocks. It might be helpful to determine what caused all of the CR and CU memory reads.

Are you able to post any of the initialization parameters, such as db_writer_processes? Kevin Closson posted a series of

articles some time ago that describe how the value of that parameter might cause problems for the L1, L2, and L3 caches on

CPUs - here are a couple of the articles:

http://kevinclosson.wordpress.com/2007/08/10/learn-how-to-obliterate-processor-caches-configure-lots-and-lots-of-dbwr-

processes/

http://kevinclosson.wordpress.com/2007/08/17/over-configuring-dbwr-processes-part-ii/

> Just one other note...before testing a new instance I

> tried creating a 4k blocksize tablespace in the 16k

> instance. I did a CTAS to the new (4k) tablespace

> and a CTAS to another table in a normal tablespace.

> The results were consistent, the 16k blockszie

> tablespace took roughly 40 minutes during that test,

> the 4k blocksize tablespace took roughly 2.5

> minutes. That's why I don't think it was an exp/imp

> issue at this point.

Would doing the above (CTAS) compact the data into potentially fewer blocks (more rows per block)? Assuming that the second

column in the table contained a very small value (or was NULL), might there have been a greater chance of row migration in the

16KB tablespace during the update as the rows expanded in size?

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Steve

Karam

Re: Larger vs. Small data block

Posted: Jun 14, 2008 7:57 PM in response to: Charles Hooper
Reply

Posts: 126

From: Virginia Beach, VA

Registered: 9/14/05

> I had a little free time one day and starting running

> some calculations.

Your calculations sound very interesting, I'll have to check out your findings soon.

> What might be interesting is the line containing

> "c=1000,e=63". Considering that there are 8 CPUs,

> and the c= value is about 16 times greater than the

> e= value - I thought in such a situation, the maximum

> value of any c= value is the e= value multiplied by

> the number of CPUs. I could be wrong. It might have

> been helpful to have captured the 10046 trace file at

> level 8 or 12 to determine what wait events may have

> contributed

I have those, but unfortunately I'm not at liberty to share them. As I mentioned to Jonathan however, I did notice a good deal

of log buffer switch completion wait on the 16k trials.

> Note that memory latency is not the only problem. As

> Jonathan pointed out, the consistent reads plus the

> current reads is 447,737,235 in the 16KB database,

> but only 2,232,024 in the 4KB database. At the

> maximum memory speed (no latency) per my Usenet post,

> it would take 688 seconds (11.4 minutes) to read

> that number of 16KB blocks, compared with 0.85

> seconds to read that number of 4KB blocks. It might

> be helpful to determine what caused all of the CR and

> CU memory reads.

That's the tack I've been taking, I think you're right, it will probably produce the most meaningful results.

> Are you able to post any of the initialization

> parameters, such as db_writer_processes?

I can tell you that parameter is unset. I'm sorry, but I can't disclose the initialization parameters in full or much more

detail than that. I was given some leeway by the client, but not much!

> Would doing the above (CTAS) compact the data into

> potentially fewer blocks (more rows per block)?

> Assuming that the second column in the table

> contained a very small value (or was NULL), might

> there have been a greater chance of row migration in

> the 16KB tablespace during the update as the rows

> expanded in size?

Definitely a possible what if. It might be worth an extra test or two. However, these results were consistent not only for

that one update, but all DML testing we performed. That was against both existing objects and newly created objects. Their

development environment, which was the same except for 1) 32-bit and 2) the 4k blocksize, was consistent as well without any

CTAS or exp/imp necessary.

Out of curiosity, does any of this diminish the fact that for this client on this server on this Oracle version on this word

size on this architecture on their app, going from 16k to 4k produced a sizeable diffrerence on DML and the same or better

performance on queries? I consider it my duty to determine the actual reason why the change made a difference for my client

(and I enjoy doing so as well), but at the same time a 270x can't be written off due to conventional wisdom. I know my client

doesn't think so.

I'll check back on Monday, it's time for me to enjoy my Father's Day. To any fathers on the thread, I hope you enjoy yours as

well!

(No, you cannot claim to be the father of your database)

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 15, 2008 5:52 AM in response to: Steve Karam
Reply

>

> Out of curiosity, does any of this diminish the fact

> that for this client on this server on this Oracle

> version on this word size on this architecture on

> their app, going from 16k to 4k produced a sizeable

> diffrerence on DML and the same or better performance

> on queries? I consider it my duty to determine the

> actual reason why the change made a difference for my

> client (and I enjoy doing so as well), but at the

> same time a 270x can't be written off due to

> conventional wisdom. I know my client doesn't think

> so.

>

At present, based on the evidence you have supplied, it's NOT a fact that "going from 16K to 4K" produced a sizeable

difference in DML.

At best we have a fact that producing a clean copy of the data somewhere else resulted in better performance on that update.

In fact the evidence suggests that the change in block size was probably irrelevant given the enormous change in the number of

current block gets and redo log generation. It is possible that you've highlighted a defect in the way ASSM handles free

space; and it is possible that this is a problem that becomes more visible with your update, especially when combined with the

16K block size, and combined with an error in the initial table definition - and maybe it's all down to an error in the

initial table definition.

Based on the evidence to date, I would not advise the client to move his system to a 4KB block size - after all, what's the

next step going to be if and when (in three months time, say) the performance on the 4KB block size is as bad as it currently

is on the 16KB block size ?

What's the average length of the columns involved ?

Does the update change the length of the column; in particular does it take the column from null to non-null ?

How many rows are there in the table in total, and is the 830,000 a fairly constant number, or a fairly constant percentage of

the total ?

Are the updated rows scattered throughout the table, or are they mostly at the end of the table.

Do rows get deleted in bulk after a while ?

These are all questions that the system designer should have thought about - and then maybe the problem wouldn't exist because

(for example) a suitable value for pctfree would have been chosen from the outset.

If you're allowed to give the answers to these question (and tell use the size of pctfree) then that would be helpful.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

"The greatest enemy of knowledge is not ignorance,

it is the illusion of knowledge." Stephen Hawking.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 15, 2008 6:11 AM in response to: Jonathan Lewis
Reply

Your Hawking quote is both priceless and appropriate. It succinctly summarizes the most important feature of this thread,

in a single sentence, better than all of the reasoned arguments so far made.

What we have been witnessing is the illusion of knowledge. The application of the Aristolean method rather than the scientific

method.

What are seeing played out here in this OTN forum thread is, at its essence, the same debate played out in the arguments

made against Galileo and Newton.

http://wiki.elearning.ubc.ca/ScientificChange?show_comments=1

benprusinski

Posts: 207

From: San Diego, CA

Registered: 2/1/00

Re: Larger vs. Small data block

Posted: Jun 15, 2008 11:34 AM in response to: damorgan
Reply

This has been very interesting discussion on block size and performance. As for Daniel Morgan's quote about knowledge, I would

respectfully agree to disagree.

Steve has provide plenty of data to verify performance improvement for block size changes.

And it does seem to follow the scientific method.

While there could be other factors, the fact is this: performance tuning is not a static matter. It is an ongoing exercise

that will and should be conducted on both a short term and long term basis to look at all aspects of performance and what

impact each tuning change affects the database performance for the entire database environment.

Like I mentioned in a previous post to this thread, unfortunately, I was not at liberty to disclose confidential information

for the actual database parameters and test results for the financial services client where I improved performance by changing

the block size for the database. That is why I have taken it on myself to eventually (when I get free time!) create some new

test cases. Once I have these, I will gladly post the results on this forum and we can have further discussion.

This has definitely been an interesting thread and I appreciate all the active participation.

Regards,

Ben Prusinski

http://oracle-magician.blogspot.com/

Steve

Karam

Posts: 126

From: Virginia Beach, VA

Registered: 9/14/05

Re: Larger vs. Small data block

Posted: Jun 15, 2008 11:39 AM in response to: Jonathan Lewis
Reply

> At best we have a fact that producing a clean copy of

> the data somewhere else resulted in better

> performance on that update.

Except that I produced clean copies both in 4k and 16k areas, and the DML performance results were consistent across all

tables, not just the one.

> Based on the evidence to date, I would not advise the

> client to move his system to a 4KB block size

Thanks for your input. I had already told the client that rebuilding their entire environment was not advisable until we had

conclusively identified the issue, as we would not want to band-aid over a deeper concern. While some on this thread are

trying to paint me as some sort of reckless cowboy, I do not take my clients' multi-million dollar investments lightly. We

shall see what the client decides based upon their deadlines and the results thus far.

> These are all questions that the system designer

> should have thought about - and then maybe the

> problem wouldn't exist because (for example) a

> suitable value for pctfree would have been chosen

> from the outset.

Personally the first thing I suggested was not doing such a costly update, and instead suggested using a CTAS since it was an

update of many rows with no indexes and no where clause. CTAS itself worked very quickly, though updates against the new table

performed poorly like the original. However, I was informed that this table was not the only one suffering, but all tables

with high levels of DML.

> If you're allowed to give the answers to these

> question (and tell use the size of pctfree) then that

> would be helpful.

Time and client consent permitting, I would like to perform a new set of trials using a clean slate; meaning, new tables that

I create manually with proper settings, manually loaded (not CTAS or exp/imp), and tested for all DML activity. If I can make

that happen, I will blog about the results.

Steve

Karam

Posts: 126

From: Virginia Beach, VA

Registered: 9/14/05

Re: Larger vs. Small data block

Posted: Jun 15, 2008 11:43 AM in response to: damorgan
Reply

damorgan:

> What have been witnessing is the illusion

> of knowledge.

Do not be so quick to discard the observations of others as the 'illusion of knowledge.' Doing so is insulting, close-minded,

and irresponsible. If you have any scientific data to contribute to the observation that I have made, please feel free to do

so. Simply making accusations from the sidelines does not prove or disprove anything.

Personally I love Stephen Hawking, but even he has conceded that currently unexplainable or partially explained observations

have their merit (e.g. strings theory, spooky action at a distance).

Why not broaden our horizons?

If we value the pursuit of knowledge, we must be free to follow wherever that search may lead us. The free mind is not a

barking dog, to be tethered on a ten-foot chain. - Adlai E. Stevenson Jr.

The dumbest people I know are those who know it all. - Malcolm Forbes

A little knowledge that acts is worth infinitely more than much knowledge that is idle. - Kahlil Gibran

Knowledge must come through action; you can have no test which is not fanciful, save by trial. - Sophocles

Whoever undertakes to set himself up as a judge of Truth and Knowledge is shipwrecked by the laughter of the gods. - Albert

Einstein

Imagination is more important than knowledge. For while knowledge defines all we currently know and understand, imagination

points to all we might yet discover and create. - Albert Einstein

Knowledge has to be improved, challenged, and increased constantly, or it vanishes. - Peter Drucker

It is beyond a doubt that all our knowledge begins with experience. - Imannuel Kant

That knowledge is not happiness, and science But an exchange of ignorance for that Which is another kind of ignorance. - Lord

Byron

Hans

Forbrich

(...

Posts: 663

From: Alberta, Canada

Registered: 11/17/06

Re: Larger vs. Small data block

Posted: Jun 15, 2008 12:38 PM in response to: oradba
Reply

> Honni soit qui mal y pense

Könnte viele Wege missverstanden werden <g>

Billy

Verreynne

Posts: 6,628

Registered: 5/27/99

Re: Larger vs. Small data block

Posted: Jun 15, 2008 1:17 PM in response to: benprusinski
Reply

> Due to NDA and confidential nature of the data for the past client, I cannot disclose the actual data and test

> results and it was a few years ago. Tell ya what, I am going to create some test cases just for you Billy Boy to

>make you happy when I get a free moment.

Not asking anything that may "compromise" a NDA. Simply *what* was observed technically that verified the increase in

performance was due to using a larger block size.

Also, seeing that is is a couple of years old, how sure you are that whatever was done and observed that lead to the

conclusion that block size made such a large difference is still relevant in 10r2 and 11g?

> But it will not be right this second and making rude comments to others on this forum is pretty

> disrespectful so I am not in a rush to drop everything and do the testing right this second.

Come on Ben.. that posting was done with tongue firmly in cheek. The Flying Spaghetti Monster should have been a clue. And if

I was "disrespectful" to anything, it was to an unsubstantiated claim that block size made such a large performance

difference.

As I would have been if you claimed that it made no difference. As I would have done if an ace or a noob posted it. (it's

never about the poster to me, it is about the posting - unlike some who believe you should post your qualifications, CV and

blood line in order to be taken as a valid source of information)

What matters to me (and I believe others here) are what can we technically do, similar to what you did, in order to obtain

similar type of performance improvements within a similar environment. Is that an unfair expectation?

If you (or others) cannot back up your claims, then how can anyone realistically expect that such a claim can be considered

when making technical decisions?

And that is exactly what these forums are about. The sharing of technical information that is accurate and comprehensive for

fellow Oracle "professionals" to use.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 15, 2008 2:09 PM in response to: benprusinski
Reply

Providing numbers is not science: Aristotle used math too.

What is important is in how the experiment was formulated and the conclusions drawn.

Note, for example, the commentary supplied by Jonathan Lewis in which he posted the Hawking's quotation. Note that there are

many possible alternative explanations for a reported experimental result.

What is required to make something science is to create a controlled experiment in which the change to a single parameter can

be observed. If you change two or more factors then you lose the ability to identify a clear cause and effect.

Just to make my point clear lets create an experiment. Lets tune a database by doing the following things:

1. Double the value of session cached cursors

2. Half the block size

3. Export the data and reimport it

4. Slowly twirl three times while reciting over-quoted lines from Shakespeare

If performance improves what was the cause?

Is it repeatable?

Is there some fact put into evidence that other DBAs can use as a rule of thumb?

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 15, 2008 2:17 PM in response to: Steve Karam
Reply

Lets take this out of the realm of Oracle databases and analyze the same information in the context of medical science and an

experiment in which I have first hand knowledge.

A pharmaceutical company in the 1960s was testing oral contraceptives at Stanford University (a school whose female students

are definitely above average in intelligence). One group was given dosage "A" and another group dosage "B". In both cases the

amount of drug was the same but one group received 21 active pills and 7 placebos while the other group received 28 active

pills. One group reported more pregnancies than the other.

Was the correct interpretation that one dosage was more effective than the second?

My point was not to insult anyone. But rather to point out that numbers, even numbers presented in chart form, are subject to

multiple interpretations unless the experimental conditions are carefully controlled.

If you think the answer to the above is "yes" ... I will provide the rest of the story that proves otherwise.

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 15, 2008 2:43 PM in response to: benprusinski
Reply

[nobr]>

> Steve has provide plenty of data to verify

> performance improvement for block size changes.

No he hasn't.

All he provided as evidence was something that suggested his performance improvement had nothing to do with the block size and

everything to do with the state of the data before the test started.

He also said that he also did a test based on copying the data into another tablespace with 16KB blocks - but we have no

evidence that he then tested this copy. Possibly he copied the data, and then ran the test against the original.

Remember that Steve said on his blog: "Explain plans were checked, trace files examined, and not much popped up except that

the production machine was attempting larger I/Os during the update and was consequently taking much longer." then he printed

in this thread a line from a trace file without commenting on the 446M current gets for a process that updates 830,000 rows -

beyond the fact that it was slower than the update using the 4KB block. Also, after I suggested a cause and corroborating

symptom, he confirmed that "As a matter of fact, on the 16k blocksize there were a fair amount of log file switch completion

waits appearing here and there."

Given the fact that his (attempted) test of the copy in the 16KB block size didn't produce a variation in the run time, and

that there is no good reason for a clean copy to perform the way he says it did, and that he supplied no evidence for the

test, Occam's razor suggests that he just pointed his code at the wrong table.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

"The greatest enemy of knowledge is not ignorance,

it is the illusion of knowledge." Stephen Hawking.[/nobr]

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 15, 2008 2:57 PM in response to: benprusinski
Reply

>

> For a past customer a large financial company, we

> improved database performance by increasing block

> size from 8k blocksize to 16k blocksize.

> Performance for nightly data loads went down from 22

> hours to 6 hours when we increased the database block

> size.

>

I don't like to disagree with Hans Forbrich that this is a valid data point - but it's obvious it isn't.

Twenty-two hours for a nightly run leave only 2 hours for the daytime processing, which means most of your daytime processing

would have been running concurrently with the overnight.

The likely consequences of this would be massive contention, huge overheads due to read-consistency (slowing down the day and

nightly work), and the potential for index and table space wastage on a massive scale.

Although NDA does not allow you to give any details, it would be useful to see a few comments on how you justified to the

client that the only cost-effective option was a complete rebuild of the entire database. What other options were indicated

but discounted during your analysis ?

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

"The greatest enemy of knowledge is not ignorance,

it is the illusion of knowledge." Stephen Hawking.

Hans

Forbrich

Posts: 7,483

From: AB, Canada

Registered: 3/13/99

Re: Larger vs. Small data block

Posted: Jun 15, 2008 3:24 PM in response to: Jonathan Lewis
Reply

> I don't like to disagree with Hans Forbrich that this

> is a valid data point - but it's obvious it isn't.

Since Steve (and Ben) leave me with the impression they are competent, I think it's a valid data point.

Where it applies, what assumptions are valid or invalid, where it can be applied to any specific or generalized environment

other that the poster's ... those questions remain unanswered. Same with the fact that Oracle uses 8K blocks.

So to me it's as valid as some of the other hearsay and experience points made by some of our other esteemed colleagues. I'm

not quite sure which chart or where on a chart to put the point.

But it's a data point. <g>

What I am saying is that anecdotes of other people's experience should not simply be rejected, but taken for what they are -

anecdotes of other people's experience. It's incorrect for me to tell them their experience is wrong. Just as it's incorrect

for them to tell me that their experience will provide identical or similar results in my environment.

Until it is backed up with reproducible methods, it does stay as anecdotal evidence.

However, if their experience or anecdote opens my mind to trying something that I had not thought about when I am stuck, it is

both valid and valuable.

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 15, 2008 4:35 PM in response to: Hans Forbrich
Reply

> What I am saying is that anecdotes of other people's

> experience should not simply be rejected, but taken

> for what they are - anecdotes of other people's

> experience. It's incorrect for me to tell them their

> experience is wrong.

I don't think anyone is questioning the basic phenomena they observed - "time to completion was shorter" - but it's certainly

correct to question their interpretation - "it's the change in block size" - if they supply no supporting argument (cp. Ben)

or supply information that suggests their interpretation is wrong (cp. Steve).

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

"The greatest enemy of knowledge is not ignorance,

it is the illusion of knowledge." Stephen Hawking.

Hans

Forbrich

Posts: 7,483

From: AB, Canada

Registered: 3/13/99

Re: Larger vs. Small data block

Posted: Jun 15, 2008 4:40 PM in response to: Jonathan Lewis
Reply

I think we agree.

I am saying that I can not put it on a specific chart because it's an anecdote. You are asking for rationale to put the

anecdote specifically on the Block_Size chart.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 15, 2008 5:42 PM in response to: Hans Forbrich
Reply

You wrote:

"What I am saying is that anecdotes of other people's experience should not simply be rejected, but taken for what they are -

anecdotes"

And like Jonathan I don't question that they saw what they saw. Nor do I question their competence.

But our species has developed, over the millennium, a phenomenal ability to rationalize and to draw conclusions where little

conclusive evidence exists. In primitive times this ability had tremendous survival value thus we are all here. But applying

these same rules to medicine, or a card game, or a database is fraught with dangers.

I see that no one has yet asked me to explain why that double-blind pharmaceutical testing was invalid. No one willing to

bite? The answer is surprisingly similar to something we have seen in this thread. <g>

benprusinski

Posts: 207

From: San Diego, CA

Registered: 2/1/00

Re: Larger vs. Small data block

Posted: Jun 15, 2008 6:50 PM in response to: Jonathan Lewis
Reply

Hello Jonathan,

You have some valid points. Yes, there would be possible considerations for overhead with read consistency and possible table

and index wastage.

I was called in for this client after the previous Oracle DBA quit on the spot. He was inexperienced and built the database

with an 8k default size for a 4TB data warehouse and reporting financial database on Oracle. Fortunately, it was not a

production data warehouse but rather a copy of production.

For same odd reason, the regular production data warehouse used 16k block size and had no issues with the ETL nightly jobs

which ran between 3-6 hours each night. The other database (Copy of Prod) was using 8k blocks and running very slow. I checked

all the performance setups when I was called in to help them at the last minute and ran Statspack reports and checked all

database and server OS parameters. Client agreed to let me rebuild the database with 16k block size and we saw the performance

improvement.

I provided all the options to the client in addition to block size change including changing the application design. However,

due to project deadlines and the need to have things quickly improved for performance to get the copy of PROD database back in

sync with current production, I gave them the quickest option at the time which was to increase the block size to 16k from the

8k default value.

Regards,

Ben Prusinski

http://oracle-magician.blogspot.com/

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 15, 2008 7:51 PM in response to: benprusinski
Reply

Ben Prusinski wrote:

He was inexperienced and built the database with an 8k default size for a 4TB data warehouse and reporting financial database

on Oracle.

Could you clarify this statement? Are you suggesting that because of his inexperience, he incorrectly chose 8k blocksize for a

4TB data warehouse, possibly suggesting that a 4TB warehouse should have a block size larger than 8k based on size alone? Or

are you suggesting that because of his lack of experience, he overlooked the fact the production database used a 16k block and

mistakely built the copy with an 8k block making them different?

--

Regards,

Greg Rahn

http://structureddata.org

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 15, 2008 8:01 PM in response to: benprusinski
Reply

You wrote:

"He was inexperienced and built the database with an 8k default size for a 4TB data warehouse and reporting financial database

on Oracle."

I don't follow the logic here could you please explain this. I can point you to some 200+TB databases using 8K blocks that are

among the most efficient on the planet.

Perhaps I am misunderstanding your intent but I don't see where A follows B. Thanks.

benprusinski

Posts: 207

From: San Diego, CA

Registered: 2/1/00

Re: Larger vs. Small data block

Posted: Jun 15, 2008 8:47 PM in response to: Greg Rahn
Reply

Actually, the previous DBA did overlook the fact that the production database was originally built with a 16k block size. I

believe that when he built the database copy of production with 8k block size that it was a mistake.

benprusinski

Posts: 207

From: San Diego, CA

Registered: 2/1/00

Re: Larger vs. Small data block

Posted: Jun 15, 2008 8:49 PM in response to: damorgan
Reply

I don't follow the logic here could you please explain this. I can point you to some 200+TB databases using 8K blocks that are

among the most efficient on the planet.

Very well, but in the real case that I worked on, when I changed the block size to 16k from 8k, I saw the performance

improvement.

Steve

Karam

Posts: 126

From: Virginia Beach, VA

Registered: 9/14/05

Re: Larger vs. Small data block

Posted: Jun 15, 2008 9:09 PM in response to: Jonathan Lewis
Reply

Jonathan,

> He also said that he also did a test

> based on copying the data into another tablespace

> with 16KB blocks - but we have no evidence that he

> then tested this copy. Possibly he copied the data,

> and then ran the test against the original.

Before you were talking anomalies, now I'm either a liar or inept?

> without commenting on the 446M current gets for a

> process that updates 830,000 rows

Omission is not ignorance.

> Given the fact that his (attempted) test of the copy

> in the 16KB block size didn't produce a variation in

> the run time,

Not a sizable variation, no.

> and that there is no good reason for a

> clean copy to perform the way he says it did, and

> that he supplied no evidence for the test,

Omission is not ignorance.

> Occam's razor suggests that he just pointed

> his code at the wrong table.

Am I translating this right? You're basically saying that we should take the simple assumption that I did it wrong in favor of

the possibility something else was amiss? I was actually quite liking some of the possibilities you brought up in your

interpretations up to this point. This just seems like giving up.

damorgan,

No, I would not take that assumption on your medication question. In order to keep this thread somewhat civilized I won't

elaborate, but there are still many unanswered questions and factors.

And I fully understand that concept. I produced an observation from a test. Never was it said, "Jonathan Lewis is wrong, it's

not an ASSM issue, or a delayed block cleanout issue, it's because I changed blocksize." Never was it said that the

observation was "proof" of anything at all. Jonathan, you disputed the use of the word "fact" in a recent post; I concede that

this was poor wording for that one statement. What was fact was that query times changed; I was not trying to imply that the

blocksize change was the only factor involved.

It was an observation, not a proof, meant to be picked apart just as some in the thread have been doing. In fact, I even

concurred that it would be good to run another test, time and client consent willing, that would be a 'clean slate' test with

everything run from scratch and documented. This statement was glossed over in favor of saying my tests were wrong.

damorgan, I've been a DBA for many years, whether as a permanent DBA or a consultant, as well as an instructor for OU. Argue

the technical specifications of a test all you like, but do not label my knowledge illusory. Leave your bias and assumptions

at the door, sir.

Hans, you nailed it when you said "Until it is backed up with reproducible methods, it does stay as anecdotal evidence.

However, if their experience or anecdote opens my mind to trying something that I had not thought about when I am stuck, it is

both valid and valuable." Thank you for not making any assumptions.

I don't think I'll be visiting this thread for a while if at all. I've already wasted too much time on it, the page count is

far too long, and anything I add will be disputed regardless of my intent. Thank you for the interpretations of the test, no

thank you on the assumptions about my character or knowledge. I am still open to interpretations, theories, or anything else,

just leave a comment on my blog or email me. Goodnight, good luck, and Godspeed!

Message was edited by:

Steve Karam

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 15, 2008 9:53 PM in response to: damorgan
Reply

> A pharmaceutical company in the 1960s was testing

> oral contraceptives at Stanford University (a school

> whose female students are definitely above average in

> intelligence). One group was given dosage "A" and

> another group dosage "B". In both cases the amount of

> drug was the same but one group received 21 active

> pills and 7 placebos while the other group received

> 28 active pills. One group reported more pregnancies

> than the other.

>

> Was the correct interpretation that one dosage was

> more effective than the second?

>

> My point was not to insult anyone. But rather to

> point out that numbers, even numbers presented in

> chart form, are subject to multiple interpretations

> unless the experimental conditions are carefully

> controlled.

>

> If you think the answer to the above is "yes" ... I

> will provide the rest of the story that proves

> otherwise.

> I see that no one has yet asked me to explain why

> that double-blind pharmaceutical testing was invalid.

> No one willing to bite? The answer is surprisingly

> similar to something we have seen in this thread.

.... but you haven't listed the hormone level in each group. As an Oracle instructor, you have the lack of knowledge in

applied science. So far i have noted your zero contribution and high level tendency to promote troll in this thread.

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 15, 2008 9:57 PM in response to: damorgan
Reply

damorgan

Also, please, i would like to see the name of at least one company with 200+TB data in their single instance of Oracle

Hemant

K

Chitale

Posts: 1,259

Registered: 11/6/98

Re: Larger vs. Small data block

Posted: Jun 15, 2008 10:16 PM in response to: sp009
Reply

[not replying to sp009 specifically, just wanted to add my observation, so

this post isn't a response to a specific person but some misconceptions]

There really should not be a "definitive" [but could, probably, be a "tenuous"]

relationship between the database size and the block size used for that database.

There are a number of determinants of block size :

1. Concurrent DML . Very high rates of concurrent DML on adjacent rows/blocks

can encounter waits on latches (besides the obvious ITL) waits with larger block

sizes

2. Block Clones. Too many cloned blocks means that a signficant portion of

the db_cache holds redundant data -- which situation becomes "badder" (if not

"worse") with larger block sizes

3. DWH Query environments might do better with larger block sizes -- but

we seem to have disagreements on this

4. Block sizes can impact Redo Generation if using scripted Hot Backups

5. Larger block sizes might (might !) mean better, more, compact indexes

(inspite of all those experts who disagree)

6. CPU, Bus Transfer Speeds, I/O Hardware and Transfer speeds might

manifest differently with high rates of concurrent single and multiple block reads

if block sizes are different

What I have been trying to say is that

THERE IS NO CORRECT BLOCK SIZE. Once upon a time 2K seemed to be

correct. Currently 8K seems to be correct. But that is not necessarily a

universal truth. Under certain conditions, 8K is not optimal.

And let's just all leave it at that. We all agree to disagree about the 'findings'

or 'interpretation' of test results

Hans

Forbrich

Posts: 7,483

From: AB, Canada

Registered: 3/13/99

Re: Larger vs. Small data block

Posted: Jun 15, 2008 10:18 PM in response to: sp009
Reply

> Also, please, i would like to see the name of at

> least one company with 200+TB data in their single

> instance of Oracle

Interesting question, so I checked Google. Winter Corp has been publishing the largest VLDB stats for several years.

In 2005, Max Planck Institute for Meteorology has a 222,835 GB Oracle database according to

http://www.wintercorp.com/VLDB/2005_TopTen_Survey/TopTenWinners_2005.asp

Hans

Forbrich

Posts: 7,483

From: AB, Canada

Registered: 3/13/99

Re: Larger vs. Small data block

Posted: Jun 15, 2008 10:20 PM in response to: Hemant K Chitale
Reply

> What I have been trying to say is that

> THERE IS NO CORRECT BLOCK SIZE. Once upon a time 2K seemed to be

> correct. Currently 8K seems to be correct. But that is not necessarily a

> universal truth. Under certain conditions, 8K is not optimal.

Yes!

>

> And let's just all leave it at that. We all agree to disagree about the 'findings'

> or 'interpretation' of test results

YES!!!!!

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 15, 2008 10:47 PM in response to: sp009
Reply

Interesting but irrelevant to the issue. The reality as clearly demonstrated in today's marketplace is that is does not

matter. Mirroring, in a sense, my feeling about much of what is being posted about block size. Can it affect performance ...

yes. Is it relevant to much of the anecdotal evidence put forward here? Not necessarily.

The question is still on the table. <g>

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 15, 2008 10:49 PM in response to: sp009
Reply

Think very large internet retailer. Think Seattle. Have a great day.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 15, 2008 10:54 PM in response to: Hans Forbrich
Reply

Which, by definition, means that the observations can not be relied upon as a guide in making decisions with respect to any

other system.

So given that there are some database properties that can be easily configured, and reconfigured, on-the-fly. And that others,

such as block size, are essentially set and forget. The most flexible solution, unless you've the luxury of rebuilding a

database from scratch, is to go with the 8K block and then use all of the other tools of the trade to tune it over the years.

Hans

Forbrich

Posts: 7,483

From: AB, Canada

Registered: 3/13/99

Re: Larger vs. Small data block

Posted: Jun 15, 2008 11:10 PM in response to: damorgan
Reply

> Which, by definition, means that the observations can

> not be relied upon as a guide in making decisions

> with respect to any other system.

Yup.

Not a guide, but an alternative to consider when doing benchmarks.

And, as I said in a much earlier post, an alternative that is not very high on the list.

But an alternative, never the less.

Message was edited by: Hans Forbrich

Amusing and worthy of reading as this thread has been in places, reality does call. I've got a Spatial seminar to review

modernize ...

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 16, 2008 3:13 AM in response to: Steve Karam
Reply

>

> > He also said that he also did a test

> > based on copying the data into another tablespace

> > with 16KB blocks - but we have no evidence that he

> > then tested this copy. Possibly he copied the

> data, and then ran the test against the original.

>

> Before you were talking anomalies, now I'm either a liar or inept?

>

One silly mistake doesn't make you incompetent. It's particularly easy to overlook an error when it gives you the answer

you're expecting to see.

Injured innocence is not an intelligent response.

> > without commenting on the 446M current gets for a

> > process that updates 830,000 rows

>

> Omission is not ignorance.

>

That does rather depend on what you include and what you omit. Omitting 446M cu gets is a rather important omission when it

accounts for 100% of the time difference that you think is due to a difference in block size. And what you seem to make most

of accounts for virtually no time at all.

>

> > Given the fact that his (attempted) test of the copy

> > in the 16KB block size didn't produce a variation in

> > the run time,

>

> Not a sizable variation, no.

>

> > and that there is no good reason for a

> > clean copy to perform the way he says it did, and

> > that he supplied no evidence for the test,

>

> Omission is not ignorance.

>

See above. But in this case, your comment is irrelevant. A better comment might have been "Absence of evidence is not evidence

of absence".

>

> > Occam's razor suggests that he just pointed

> > his code at the wrong table.

>

> Am I translating this right? You're basically saying

> that we should take the simple assumption that I did

> it wrong in favor of the possibility something else

> was amiss?

Correct. That's what Occam's razor is about.

In the absence of evidence, the simpler solution is the more sensible choice.

Have you never seen the stories of DBAs who've run a test script against the production database by accident? Silly mistakes

happen.

> I was actually quite liking some of the

> possibilities you brought up in your interpretations

> up to this point. This just seems like giving up.

>

Apart from the possible impact of index updates (which we discount because you say there are no indexes), the only possibility

I brought up was the impact of delayed block cleanout. That's partly why I can be so confident that the simplest explanation

of your 16K test is (in the absence of any evidence to the contrary) that you made a simple mistake.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

"The greatest enemy of knowledge is not ignorance,

it is the illusion of knowledge." Stephen Hawking.

Mohan

Nair

Posts: 612

Registered: 7/14/00

Re: Larger vs. Small data block

Posted: Jun 16, 2008 4:57 AM in response to: user619401
Reply

See this link

"How to choose the correct block size"

http://www.myoracleguide.com/s/MultipleBlocksizes.htm#cbsz

Mohan

Maran

Viswarayar

Posts: 4,196

From: Cecil,Singapore

Registered: 9/23/05

Re: Larger vs. Small data block

Posted: Jun 16, 2008 5:02 AM in response to: Mohan Nair
Reply

Hi Nair,

I think you need to justify your points here as this thread is more on justifying your claims rather than just providing

silver bullets

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 16, 2008 6:54 AM in response to: Charles Hooper
Reply

> > I really don't understand why all examples are

> using

> > index full scan ?

> > What about index range scan ? I made some test and

> in

> > my test

> > if you have different block in data and index

> > tablespace response time

> > is a little bit worse or equal but never was

> better.

> >

> > regards,

> > Marcin Przepiorowski

>

> What I attempted to do is to create as many possible

> access paths as possible with a limited and

> reproducible data set, while keeping as little of the

> previously read index and table blocks in memory to

> force physical reads (as if the data set were too

> large to fit into and remain in the buffer cache).

I finished putting together a more comprehensive test script that addresses many of the issues that I had with my original test

script. I performed a test of the script last night to look for typos in the script, but only had a couple minutes to review the

output. Foreign keys and indexes will have a significant impact on performance, but it is too early to tell if block size makes much

of a difference when the foreign keys are checked during an insert or update. For comparison, data is first generated into a temp

table and then copied into a table with the foreign key constraints and indexes to help isolate the cause of the execution time. The

test closely resembles a component of a purchase ordering system, with data inserted in mostly non-sequential order. Also included is

a test on a narrow (2 column) table with 900,000 rows.

New test script (warning: certain portions of the script generate 2+ GB of redo, run time for each block size is expected to be 5+

hours).

ALTER SYSTEM FLUSH BUFFER_CACHE;

ALTER SYSTEM FLUSH BUFFER_CACHE;

spool c:\testnew16.txt

set pagesize 100000

set autotrace on

set timing on

SELECT

 COUNT(*)

FROM

 ALL_OBJECTS;

SELECT 'CREATING LOCATIONS' FROM DUAL;

ALTER SESSION SET TRACEFILE_IDENTIFIER = 'CREATE_TABLES';

ALTER SESSION SET EVENTS '10046 TRACE NAME CONTEXT FOREVER, LEVEL 8';

CREATE TABLE LOCATIONS(

 LOCATION_ID VARCHAR2(15) NOT NULL ENABLE,

 WAREHOUSE_ID VARCHAR2(15) NOT NULL ENABLE,

 DESCRIPTION VARCHAR2(80),

 LOCATION_TYPE CHAR(1) NOT NULL ENABLE,

 CONSTRAINT "CHK_LOCATIONS" CHECK (

 (LOCATION_TYPE = 'T' Or LOCATION_TYPE = 'R' Or LOCATION_TYPE = 'F')) ENABLE,

 PRIMARY KEY (WAREHOUSE_ID, LOCATION_ID));

CREATE INDEX IND_LOCATIONS_1 ON LOCATIONS (LOCATION_ID);

SELECT 'CREATING UMS' FROM DUAL;

CREATE TABLE UMS (

 UNIT_OF_MEASURE VARCHAR2(15) NOT NULL ENABLE,

 DESCRIPTION VARCHAR2(40),

 UOM_SCALE NUMBER NOT NULL ENABLE,

 CONSTRAINT "CHK_UOM_SCALE" CHECK (

 (UOM_SCALE >= 0 And UOM_SCALE <= 4)) ENABLE,

 PRIMARY KEY ("UNIT_OF_MEASURE"));

SELECT 'CREATING VENDORS' FROM DUAL;

CREATE TABLE VENDORS (

 VENDOR_ID VARCHAR2(15) NOT NULL ENABLE,

 VENDOR_NAME VARCHAR2(50),

 ADDR_1 VARCHAR2(50),

 ADDR_2 VARCHAR2(50),

 ADDR_3 VARCHAR2(50),

 CITY VARCHAR2(30),

 STATE VARCHAR2(10),

 ZIPCODE VARCHAR2(10),

 COUNTRY VARCHAR2(50),

 CONTACT_FIRST_NAME VARCHAR2(30),

 CONTACT_LAST_NAME VARCHAR2(30),

 CONTACT_INITIAL VARCHAR2(2),

 CONTACT_POSITION VARCHAR2(20),

 CONTACT_HONORIFIC VARCHAR2(4),

 CONTACT_SALUTATION VARCHAR2(60),

 CONTACT_PHONE VARCHAR2(20),

 CONTACT_FAX VARCHAR2(20),

 REMIT_TO_NAME VARCHAR2(50),

 REMIT_TO_ADDR_1 VARCHAR2(50),

 REMIT_TO_ADDR_2 VARCHAR2(50),

 REMIT_TO_ADDR_3 VARCHAR2(50),

 REMIT_TO_CITY VARCHAR2(30),

 REMIT_TO_STATE VARCHAR2(10),

 REMIT_TO_ZIPCODE VARCHAR2(10),

 REMIT_TO_COUNTRY VARCHAR2(50),

 FREE_ON_BOARD VARCHAR2(25),

 SHIP_VIA VARCHAR2(40),

 BUYER VARCHAR2(15),

 REPORT_1099_MISC CHAR(1) DEFAULT 'N' NOT NULL ENABLE,

 TERMS_NET_TYPE CHAR(1) DEFAULT ' ' NOT NULL ENABLE,

 TERMS_NET_DAYS NUMBER,

 TERMS_NET_DATE DATE,

 TERMS_DISC_TYPE CHAR(1) DEFAULT ' ' NOT NULL ENABLE,

 TERMS_DISC_DAYS NUMBER,

 TERMS_DISC_DATE DATE,

 TERMS_DISC_PERCENT NUMBER(5,3),

 TERMS_DESCRIPTION VARCHAR2(50),

 USER_1 VARCHAR2(80),

 USER_2 VARCHAR2(80),

 USER_3 VARCHAR2(80),

 USER_4 VARCHAR2(80),

 USER_5 VARCHAR2(80),

 USER_6 VARCHAR2(80),

 USER_7 VARCHAR2(80),

 USER_8 VARCHAR2(80),

 USER_9 VARCHAR2(80),

 USER_10 VARCHAR2(80),

 CONSTRAINT "CHK_VENDORS" CHECK (

 (REPORT_1099_MISC = 'Y' Or REPORT_1099_MISC = 'N')

 AND (TERMS_NET_TYPE = 'A'

 Or TERMS_NET_TYPE = 'M'

 Or TERMS_NET_TYPE = 'D'

 Or TERMS_NET_TYPE = 'N'

 Or TERMS_NET_TYPE = 'E')

 AND (TERMS_DISC_TYPE = 'A'

 Or TERMS_DISC_TYPE = 'M'

 Or TERMS_DISC_TYPE = 'D'

 Or TERMS_DISC_TYPE = 'N'

 Or TERMS_DISC_TYPE = 'E')) ENABLE,

 PRIMARY KEY (VENDOR_ID));

CREATE TABLE VENDORS_TEMP AS

SELECT

 *

FROM

 VENDORS;

SELECT 'CREATING PARTS' FROM DUAL;

CREATE TABLE PARTS (

 PART_ID VARCHAR2(30) NOT NULL ENABLE,

 DESCRIPTION VARCHAR2(40),

 STOCK_UM VARCHAR2(15) NOT NULL ENABLE,

 PLANNING_LEADTIME NUMBER DEFAULT 0 NOT NULL ENABLE,

 ORDER_POLICY CHAR(1) DEFAULT 'M' NOT NULL ENABLE,

 ORDER_POINT NUMBER(14,4),

 SAFETY_STOCK_QTY NUMBER(14,4),

 FIXED_ORDER_QTY NUMBER(14,4),

 DAYS_OF_SUPPLY NUMBER,

 MINIMUM_ORDER_QTY NUMBER(14,4),

 MAXIMUM_ORDER_QTY NUMBER(14,4),

 ENGINEERING_MSTR VARCHAR2(3),

 PRODUCT_CODE VARCHAR2(15),

 COMMODITY_CODE VARCHAR2(15),

 MFG_NAME VARCHAR2(30),

 MFG_PART_ID VARCHAR2(30),

 FABRICATED CHAR(1) DEFAULT 'N' NOT NULL ENABLE,

 PURCHASED CHAR(1) DEFAULT 'Y' NOT NULL ENABLE,

 STOCKED CHAR(1) DEFAULT 'N' NOT NULL ENABLE,

 DETAIL_ONLY CHAR(1) DEFAULT 'N' NOT NULL ENABLE,

 DEMAND_HISTORY CHAR(1) DEFAULT 'N' NOT NULL ENABLE,

 TOOL_OR_FIXTURE CHAR(1) DEFAULT 'N' NOT NULL ENABLE,

 INSPECTION_REQD CHAR(1) DEFAULT 'N' NOT NULL ENABLE,

 WEIGHT NUMBER(14,4),

 WEIGHT_UM VARCHAR2(15),

 DRAWING_ID VARCHAR2(15),

 DRAWING_REV_NO VARCHAR2(8),

 PREF_VENDOR_ID VARCHAR2(15),

 PRIMARY_WHS_ID VARCHAR2(15),

 PRIMARY_LOC_ID VARCHAR2(15),

 BACKFLUSH_WHS_ID VARCHAR2(15),

 BACKFLUSH_LOC_ID VARCHAR2(15),

 INSPECT_WHS_ID VARCHAR2(15),

 INSPECT_LOC_ID VARCHAR2(15),

 MRP_REQUIRED CHAR(1) DEFAULT 'N',

 MRP_EXCEPTIONS CHAR(1) DEFAULT 'N',

 PRIVATE_UM_CONV CHAR(1) DEFAULT 'N',

 AUTO_BACKFLUSH CHAR(1) DEFAULT 'Y',

 PLANNER_USER_ID VARCHAR2(20),

 BUYER_USER_ID VARCHAR2(20),

 ABC_CODE CHAR(1),

 ANNUAL_USAGE_QTY NUMBER(15,4),

 INVENTORY_LOCKED CHAR(1) DEFAULT 'N' NOT NULL ENABLE,

 UNIT_MATERIAL_COST NUMBER(20,6) DEFAULT 0 NOT NULL ENABLE,

 UNIT_LABOR_COST NUMBER(20,6) DEFAULT 0 NOT NULL ENABLE,

 UNIT_BURDEN_COST NUMBER(20,6) DEFAULT 0 NOT NULL ENABLE,

 UNIT_SERVICE_COST NUMBER(20,6) DEFAULT 0 NOT NULL ENABLE,

 BURDEN_PERCENT NUMBER(5,2) DEFAULT 0 NOT NULL ENABLE,

 BURDEN_PER_UNIT NUMBER(20,6) DEFAULT 0 NOT NULL ENABLE,

 PURC_BUR_PERCENT NUMBER(6,3) DEFAULT 0 NOT NULL ENABLE,

 PURC_BUR_PER_UNIT NUMBER(20,6) DEFAULT 0 NOT NULL ENABLE,

 FIXED_COST NUMBER(15,2) DEFAULT 0 NOT NULL ENABLE,

 UNIT_PRICE NUMBER(20,6),

 NEW_MATERIAL_COST NUMBER(14,4) DEFAULT 0 NOT NULL ENABLE,

 NEW_LABOR_COST NUMBER(14,4) DEFAULT 0 NOT NULL ENABLE,

 NEW_BURDEN_COST NUMBER(14,4) DEFAULT 0 NOT NULL ENABLE,

 NEW_SERVICE_COST NUMBER(14,4) DEFAULT 0 NOT NULL ENABLE,

 NEW_BURDEN_PERCENT NUMBER(5,2) DEFAULT 0 NOT NULL ENABLE,

 NEW_BURDEN_PERUNIT NUMBER(20,6) DEFAULT 0 NOT NULL ENABLE,

 NEW_FIXED_COST NUMBER(15,2) DEFAULT 0 NOT NULL ENABLE,

 MAT_GL_ACCT_ID VARCHAR2(30),

 LAB_GL_ACCT_ID VARCHAR2(30),

 BUR_GL_ACCT_ID VARCHAR2(30),

 SER_GL_ACCT_ID VARCHAR2(30),

 QTY_ON_HAND NUMBER(14,4) DEFAULT 0 NOT NULL ENABLE,

 QTY_AVAILABLE_ISS NUMBER(14,4) DEFAULT 0 NOT NULL ENABLE,

 QTY_AVAILABLE_MRP NUMBER(14,4) DEFAULT 0 NOT NULL ENABLE,

 QTY_ON_ORDER NUMBER(14,4) DEFAULT 0 NOT NULL ENABLE,

 QTY_IN_DEMAND NUMBER(14,4) DEFAULT 0 NOT NULL ENABLE,

 USER_1 VARCHAR2(80),

 USER_2 VARCHAR2(80),

 USER_3 VARCHAR2(80),

 USER_4 VARCHAR2(80),

 USER_5 VARCHAR2(80),

 USER_6 VARCHAR2(80),

 USER_7 VARCHAR2(80),

 USER_8 VARCHAR2(80),

 USER_9 VARCHAR2(80),

 USER_10 VARCHAR2(80),

 LT_PLUS_DAYS NUMBER,

 LT_MINUS_DAYS NUMBER,

 STATUS CHAR(1),

 USE_SUPPLY_BEF_LT CHAR(1),

 QTY_COMMITTED NUMBER(14,4) DEFAULT 0 NOT NULL ENABLE,

 PRT_CREATE_USER_ID VARCHAR2(30) DEFAULT USER,

 PRT_CREATE_DATE DATE DEFAULT SYSDATE,

 CONSTRAINT "CHK_PART1" CHECK (

 (PLANNING_LEADTIME >= 0)

 AND (ORDER_POLICY = 'N'

 Or ORDER_POLICY = 'M'

 Or ORDER_POLICY = 'F'

 Or ORDER_POLICY = 'E'

 Or ORDER_POLICY = 'D'

 Or ORDER_POLICY = 'P')

 AND (ORDER_POINT >= 0)

 AND (SAFETY_STOCK_QTY >= 0)

 AND (FIXED_ORDER_QTY >= 0)

 AND (DAYS_OF_SUPPLY >= 0)

 AND (MINIMUM_ORDER_QTY >= 0)

 AND (MAXIMUM_ORDER_QTY >= 0)

 AND (FABRICATED = 'Y' Or FABRICATED = 'N')

 AND (PURCHASED = 'Y' Or PURCHASED = 'N')

 AND (STOCKED = 'Y' Or STOCKED = 'N')

 AND (DETAIL_ONLY = 'Y' Or DETAIL_ONLY = 'N')

 AND (DEMAND_HISTORY = 'Y' Or DEMAND_HISTORY = 'N')

 AND (TOOL_OR_FIXTURE = 'Y' Or TOOL_OR_FIXTURE = 'N')

 AND (MRP_REQUIRED = 'Y' Or MRP_REQUIRED = 'N')

 AND (MRP_EXCEPTIONS = 'Y' Or MRP_EXCEPTIONS = 'N')

 AND (PRIVATE_UM_CONV = 'Y' Or PRIVATE_UM_CONV = 'N')

 AND (INVENTORY_LOCKED = 'Y' Or INVENTORY_LOCKED = 'N')

 AND (INSPECTION_REQD = 'Y' Or INSPECTION_REQD = 'N')) ENABLE,

 PRIMARY KEY (PART_ID),

 CONSTRAINT "FKEY_INSP" FOREIGN KEY (INSPECT_WHS_ID, INSPECT_LOC_ID)

 REFERENCES LOCATIONS (WAREHOUSE_ID, LOCATION_ID) ENABLE,

 CONSTRAINT "FKEY_PREF_VENDOR" FOREIGN KEY (PREF_VENDOR_ID)

 REFERENCES VENDORS (VENDOR_ID) ENABLE,

 CONSTRAINT "FKEY_UM" FOREIGN KEY (WEIGHT_UM)

 REFERENCES UMS (UNIT_OF_MEASURE) ENABLE,

 CONSTRAINT "FKEY_STOCK_UM" FOREIGN KEY (STOCK_UM)

 REFERENCES UMS (UNIT_OF_MEASURE) ENABLE);

CREATE INDEX IND_PARTS_1 ON PARTS (MRP_EXCEPTIONS);

CREATE INDEX IND_PARTS_2 ON PARTS (MFG_NAME, MFG_PART_ID);

CREATE INDEX IND_PARTS_3 ON PARTS (WEIGHT_UM);

CREATE INDEX IND_PARTS_4 ON PARTS (MRP_REQUIRED);

CREATE INDEX IND_PARTS_5 ON PARTS (PREF_VENDOR_ID);

CREATE INDEX IND_PARTS_6 ON PARTS (STOCK_UM);

CREATE INDEX IND_PARTS_7 ON PARTS (ORDER_POINT);

CREATE TABLE PARTS_TEMP AS

SELECT

 *

FROM

 PARTS;

SELECT 'CREATING PO_HEADER' FROM DUAL;

CREATE TABLE PO_HEADER (

 PURC_ORDER_ID VARCHAR2(15) NOT NULL ENABLE,

 VENDOR_ID VARCHAR2(15) NOT NULL ENABLE,

 CONTACT_FIRST_NAME VARCHAR2(30),

 CONTACT_LAST_NAME VARCHAR2(30),

 CONTACT_INITIAL VARCHAR2(2),

 CONTACT_POSITION VARCHAR2(20),

 CONTACT_HONORIFIC VARCHAR2(4),

 CONTACT_SALUTATION VARCHAR2(60),

 CONTACT_PHONE VARCHAR2(20),

 CONTACT_FAX VARCHAR2(20),

 PURC_ORD_ADDR_NO NUMBER,

 SHIPTO_ADDR_NO NUMBER,

 ORDER_DATE DATE DEFAULT SYSDATE NOT NULL ENABLE,

 DESIRED_RECV_DATE DATE DEFAULT TRUNC(SYSDATE),

 BUYER VARCHAR2(15),

 FREE_ON_BOARD VARCHAR2(25),

 SHIP_VIA VARCHAR2(40),

 SALES_TAX_GROUP_ID VARCHAR2(15),

 PO_STATUS CHAR(1) DEFAULT ' ' NOT NULL ENABLE,

 BACK_ORDER CHAR(1) DEFAULT ' ' NOT NULL ENABLE,

 SELL_RATE NUMBER(15,8) NOT NULL ENABLE,

 BUY_RATE NUMBER(15,8) NOT NULL ENABLE,

 ENTITY_ID VARCHAR2(5) NOT NULL ENABLE,

 POSTING_CANDIDATE CHAR(1) DEFAULT 'Y' NOT NULL ENABLE,

 LAST_RECEIVED_DATE DATE,

 TOTAL_AMT_ORDERED NUMBER(15,2) DEFAULT 0 NOT NULL ENABLE,

 TOTAL_AMT_RECVD NUMBER(15,2) DEFAULT 0 NOT NULL ENABLE,

 MARKED_FOR_PURGE CHAR(1) DEFAULT 'N' NOT NULL ENABLE,

 EXCH_RATE_FIXED CHAR(1) DEFAULT 'N' NOT NULL ENABLE,

 PROMISE_DATE DATE,

 PRINTED_DATE DATE,

 TERMS_DISC_TYPE CHAR(1),

 EDI_BLANKET_FLAG CHAR(1),

 EDI_BLANKET_PO_NO VARCHAR2(30),

 CONTRACT_ID VARCHAR2(30),

 SHIPTO_ID VARCHAR2(20),

 TERMS_NET_TYPE CHAR(1) DEFAULT ' ' NOT NULL ENABLE,

 TERMS_NET_DAYS NUMBER,

 TERMS_NET_DATE DATE,

 TERMS_DISC_DAYS NUMBER,

 TERMS_DISC_DATE DATE,

 TERMS_DISC_PERCENT NUMBER(5,3),

 TERMS_DESCRIPTION VARCHAR2(50),

 CURRENCY_ID VARCHAR2(15),

 WAREHOUSE_ID VARCHAR2(15),

 CREATE_DATE DATE DEFAULT SYSDATE NOT NULL ENABLE,

 CONTACT_MOBILE VARCHAR2(20),

 CONTACT_EMAIL VARCHAR2(50),

 USER_1 VARCHAR2(80),

 USER_2 VARCHAR2(80),

 USER_3 VARCHAR2(80),

 USER_4 VARCHAR2(80),

 USER_5 VARCHAR2(80),

 USER_6 VARCHAR2(80),

 USER_7 VARCHAR2(80),

 USER_8 VARCHAR2(80),

 USER_9 VARCHAR2(80),

 USER_10 VARCHAR2(80),

 UDF_LAYOUT_ID VARCHAR2(15),

 PO_CREATE_USER_ID VARCHAR2(30) DEFAULT USER,

 CONSTRAINT "CHK_PO" CHECK (

 (PO_STATUS = 'F' Or PO_STATUS = 'R' Or PO_STATUS = 'C' Or PO_STATUS = 'X')

 AND (BACK_ORDER = 'Y' Or BACK_ORDER = 'N')

 AND (POSTING_CANDIDATE = 'Y' Or POSTING_CANDIDATE = 'N')

 AND (MARKED_FOR_PURGE = 'Y' Or MARKED_FOR_PURGE = 'N')

 AND (TERMS_DISC_TYPE = 'A' Or TERMS_DISC_TYPE = 'M' Or TERMS_DISC_TYPE = 'D' Or TERMS_DISC_TYPE = 'N' Or TERMS_DISC_TYPE = 'E')

 AND (TERMS_NET_TYPE = 'A' Or TERMS_NET_TYPE = 'M' Or TERMS_NET_TYPE = 'D' Or TERMS_NET_TYPE = 'N' Or TERMS_NET_TYPE = 'E'))

ENABLE,

 PRIMARY KEY (PURC_ORDER_ID));

CREATE INDEX IND_PO_HEADER_1 ON PO_HEADER (VENDOR_ID, PURC_ORD_ADDR_NO);

CREATE INDEX IND_PO_HEADER_2 ON PO_HEADER (VENDOR_ID);

CREATE INDEX IND_PO_HEADER_3 ON PO_HEADER (SHIPTO_ADDR_NO);

CREATE INDEX IND_PO_HEADER_4 ON PO_HEADER (POSTING_CANDIDATE);

CREATE TABLE PO_HEADER_TEMP AS

SELECT

 *

FROM

 PO_HEADER;

SELECT 'CREATING PO_LINE' FROM DUAL;

CREATE TABLE PO_LINE (

 PURC_ORDER_ID VARCHAR2(15) NOT NULL ENABLE,

 LINE_NO NUMBER NOT NULL ENABLE,

 PART_ID VARCHAR2(30),

 VENDOR_PART_ID VARCHAR2(30),

 SERVICE_ID VARCHAR2(15),

 USER_ORDER_QTY NUMBER(14,4) NOT NULL ENABLE,

 ORDER_QTY NUMBER(14,4) NOT NULL ENABLE,

 PURCHASE_UM VARCHAR2(15),

 UNIT_PRICE NUMBER(20,6) NOT NULL ENABLE,

 TRADE_DISC_PERCENT NUMBER(6,3) DEFAULT 0 NOT NULL ENABLE,

 FIXED_CHARGE NUMBER(15,2),

 EST_FREIGHT NUMBER(15,2) DEFAULT 0 NOT NULL ENABLE,

 GL_EXPENSE_ACCT_ID VARCHAR2(30),

 SALES_TAX_GROUP_ID VARCHAR2(15),

 PRODUCT_CODE VARCHAR2(15),

 COMMODITY_CODE VARCHAR2(15),

 DESIRED_RECV_DATE DATE,

 LINE_STATUS CHAR(1) DEFAULT ' ' NOT NULL ENABLE,

 LAST_RECEIVED_DATE DATE,

 TOTAL_ACT_FREIGHT NUMBER(15,2) DEFAULT 0 NOT NULL ENABLE,

 TOTAL_USR_RECD_QTY NUMBER(14,4) DEFAULT 0 NOT NULL ENABLE,

 TOTAL_RECEIVED_QTY NUMBER(14,4) DEFAULT 0 NOT NULL ENABLE,

 TOTAL_AMT_RECVD NUMBER(15,2) DEFAULT 0 NOT NULL ENABLE,

 TOTAL_AMT_ORDERED NUMBER(15,2) DEFAULT 0 NOT NULL ENABLE,

 MFG_NAME VARCHAR2(30),

 MFG_PART_ID VARCHAR2(30),

 PROMISE_DATE DATE,

 PIECE_COUNT NUMBER(14,4),

 LENGTH NUMBER(14,4),

 WIDTH NUMBER(14,4),

 HEIGHT NUMBER(14,4),

 DIMENSIONS_UM VARCHAR2(15),

 VAT_CODE VARCHAR2(15),

 TOTAL_DISPATCH_QTY NUMBER(14,4) DEFAULT 0 NOT NULL ENABLE,

 TOTAL_USR_DISP_QTY NUMBER(14,4) DEFAULT 0 NOT NULL ENABLE,

 MINIMUM_CHARGE NUMBER(15,2),

 LAST_DISPATCH_DATE DATE,

 EDI_BLANKET_QTY NUMBER(14,4),

 EDI_BLANKET_USRQTY NUMBER(14,4),

 EDI_ACCUM_QTY_REL NUMBER(14,4),

 EDI_ACCUM_USR_REL NUMBER(14,4),

 EDI_ACCUM_QTY_REC NUMBER(14,4),

 EDI_ACCUM_USR_REC NUMBER(14,4),

 EDI_LAST_REC_DATE DATE,

 EDI_RELEASE_NO VARCHAR2(3),

 EDI_RELEASE_DATE DATE,

 EDI_QTY_RELEASED NUMBER(14,4),

 EDI_USR_QTY_REL NUMBER(14,4),

 EDI_REQ_REL_DATE DATE,

 SHIPTO_ID VARCHAR2(20),

 WAREHOUSE_ID VARCHAR2(15),

 WIP_VAS_REQUIRED CHAR(1),

 ALLOCATED_QTY NUMBER(14,4) DEFAULT 0 NOT NULL ENABLE,

 FULFILLED_QTY NUMBER(14,4) DEFAULT 0 NOT NULL ENABLE,

 HTS_CODE VARCHAR2(20),

 ORIG_COUNTRY_ID VARCHAR2(15),

 USER_1 VARCHAR2(80),

 USER_2 VARCHAR2(80),

 USER_3 VARCHAR2(80),

 USER_4 VARCHAR2(80),

 USER_5 VARCHAR2(80),

 USER_6 VARCHAR2(80),

 USER_7 VARCHAR2(80),

 USER_8 VARCHAR2(80),

 USER_9 VARCHAR2(80),

 USER_10 VARCHAR2(80),

 UDF_LAYOUT_ID VARCHAR2(15),

 POL_CREATE_USER_ID VARCHAR2(30) DEFAULT USER,

 POL_CREATE_DATE DATE DEFAULT SYSDATE,

 CONSTRAINT "CHK_PO_LINE" CHECK ((LINE_STATUS = 'A' Or LINE_STATUS = 'C')) ENABLE,

 PRIMARY KEY (PURC_ORDER_ID, LINE_NO),

 CONSTRAINT "FKEY_PO_HEADER" FOREIGN KEY (PURC_ORDER_ID)

 REFERENCES PO_HEADER (PURC_ORDER_ID) ON DELETE CASCADE ENABLE,

 CONSTRAINT "FKEY_PART_ID" FOREIGN KEY (PART_ID)

 REFERENCES PARTS (PART_ID) ENABLE,

 CONSTRAINT "FKEY_PURC_UM" FOREIGN KEY (PURCHASE_UM)

 REFERENCES UMS (UNIT_OF_MEASURE) ENABLE);

CREATE INDEX IND_PO_LINE_1 ON PO_LINE (WAREHOUSE_ID);

CREATE INDEX IND_PO_LINE_2 ON PO_LINE (SERVICE_ID);

CREATE INDEX IND_PO_LINE_3 ON PO_LINE (PART_ID);

CREATE INDEX IND_PO_LINE_4 ON PO_LINE (VENDOR_PART_ID);

CREATE TABLE PO_LINE_TEMP AS

SELECT

 *

FROM

 PO_LINE;

CREATE TABLE NARROW (

 C1 NUMBER,

 C2 NUMBER);

SELECT 'INSERTING INTO LOCATIONS' FROM DUAL;

ALTER SESSION SET TRACEFILE_IDENTIFIER = 'INSERT_LOCATIONS_UMS';

INSERT INTO

 LOCATIONS

SELECT /*+ ORDERED */

 LOC.LOCATION_ID,

 WH.WAREHOUSE_ID,

 RPAD(WH.WAREHOUSE_ID||'-'||LOC.LOCATION_ID,60),

 DECODE(MOD(ROWNUM,5),0,'T',1,'R','F')

FROM

 (SELECT

 TRIM(TO_CHAR(ABS(ROUND(COS(ROWNUM*3.1415/180*1.2)*1000000,0))))||'LOC' LOCATION_ID,

 ROWNUM RN

 FROM

 DUAL

 CONNECT BY

 LEVEL<=200) LOC,

 (SELECT

 TRIM(TO_CHAR(ABS(ROUND(SIN(ROWNUM*3.1415/180*10.1)*1000000,0))))||'WH' WAREHOUSE_ID,

 ROWNUM RN

 FROM

 DUAL

 CONNECT BY

 LEVEL<=20) WH

WHERE

 (MOD(WH.RN,10)*20+1) <= LOC.RN;

COMMIT;

EXEC DBMS_STATS.GATHER_TABLE_STATS(OWNNAME=>USER,TABNAME=>'LOCATIONS',CASCADE=>TRUE);

INSERT INTO

 UMS

SELECT

 DECODE(ROWNUM,1,'EA',2,'PC',3,'FT',4,'METER',5,'KG',6,'CASE',7,'LBS',8,'DOZEN'),

 NULL,

 4

FROM

 DUAL

CONNECT BY

 LEVEL<=8;

COMMIT;

EXEC DBMS_STATS.GATHER_TABLE_STATS(OWNNAME=>USER,TABNAME=>'UMS',CASCADE=>TRUE);

SELECT 'INSERTING INTO VENDORS' FROM DUAL;

ALTER SESSION SET TRACEFILE_IDENTIFIER = 'INSERT_VENDORS';

INSERT INTO

 VENDORS_TEMP

SELECT

 TRIM(TO_CHAR(ABS(ROUND(COS(ROWNUM*3.14159265/180*51.491976)*10000000,0))))||'VEN' VENDOR_ID,

 TRIM(TO_CHAR(ABS(ROUND(COS(ROWNUM*3.1415/180*.49)*1000000,0))))||'VENDOR NAME' VENDOR_NAME,

 RPAD('ADDR_1',40) ADDR_1,

 RPAD('ADDR_2',35) ADDR_2,

 NULL ADDR_3,

 RPAD('CITY',20) CITY,

 'CA' STATE,

 LPAD(TO_CHAR(ROWNUM),6) ZIPCODE,

 'NONE' COUNTRY,

 NULL CONTACT_FIRST_NAME,

 NULL CONTACT_LAST_NAME,

 NULL CONTACT_INITIAL,

 NULL CONTACT_POSITION,

 NULL CONTACT_HONORIFIC,

 NULL CONTACT_SALUTATION,

 NULL CONTACT_PHONE,

 NULL CONTACT_FAX,

 TRIM(TO_CHAR(ABS(ROUND(COS(ROWNUM*3.1415/180*4.491976)*1000000,0))))||'VENDOR NAME' REMIT_TO_NAME,

 RPAD('ADDR_1',40) REMIT_TO_ADDR_1,

 RPAD('ADDR_2',35) REMIT_TO_ADDR_2,

 NULL REMIT_TO_ADDR_3,

 RPAD('CITY',20) REMIT_TO_CITY,

 'CA' REMIT_TO_STATE,

 LPAD(TO_CHAR(ROWNUM),6) REMIT_TO_ZIPCODE,

 'NONE' REMIT_TO_COUNTRY,

 'NONE' FREE_ON_BOARD,

 'SPECIAL DEL' SHIP_VIA,

 'UNKNOWN' BUYER,

 'N' REPORT_1099_MISC,

 DECODE(MOD(ROWNUM,6),0,'A',1,'M',2,'D',3,'N','E') TERMS_NET_TYPE,

 ROWNUM TERMS_NET_DAYS,

 NULL TERMS_NET_DATE,

 DECODE(MOD(ROWNUM,6),0,'A',1,'M',2,'D',3,'N','E') TERMS_DISC_TYPE,

 MOD(ROWNUM,100)+10 TERMS_DISC_DAYS,

 NULL TERMS_DISC_DATE,

 3.5 TERMS_DISC_PERCENT,

 'STANDARD' TERMS_DESCRIPTION,

 'X' USER_1,

 TO_CHAR(TRUNC(SYSDATE,'YYYY'),'MON DD, YYYY') USER_2,

 NULL USER_3,

 NULL USER_4,

 NULL USER_5,

 NULL USER_6,

 NULL USER_7,

 NULL USER_8,

 NULL USER_9,

 NULL USER_10

FROM

 DUAL

CONNECT BY

 LEVEL<=50000;

SELECT 'ELIMINATING DUP V' FROM DUAL;

DELETE FROM

 VENDORS_TEMP

WHERE

 (VENDOR_ID,TERMS_NET_DAYS) IN

 (SELECT

 V.VENDOR_ID,

 V.TERMS_NET_DAYS

 FROM

 VENDORS_TEMP V,

 (SELECT

 VENDOR_ID,

 MIN(TERMS_NET_DAYS) TERMS_NET_DAYS

 FROM

 VENDORS_TEMP

 GROUP BY

 VENDOR_ID

 HAVING

 COUNT(*)>1) M

 WHERE

 V.VENDOR_ID=M.VENDOR_ID

 AND V.TERMS_NET_DAYS>M.TERMS_NET_DAYS);

INSERT INTO

 VENDORS

SELECT

 *

FROM

 VENDORS_TEMP;

COMMIT;

EXEC DBMS_STATS.GATHER_TABLE_STATS(OWNNAME=>USER,TABNAME=>'VENDORS',CASCADE=>TRUE);

SELECT 'INSERTING INTO PARTS' FROM DUAL;

ALTER SESSION SET TRACEFILE_IDENTIFIER = 'INSERT_PARTS';

INSERT INTO

 PARTS_TEMP

SELECT

 TRIM(TO_CHAR(ABS(ROUND(SIN(ROWNUM*3.14159265/180*10.191976)*10000000,0))))||'PART' PART_ID,

 TRIM(TO_CHAR(ABS(ROUND(SIN(ROWNUM*3.14159265/180*10.191976)*10000000,0))))||'DESCRIPTION' DESCRIPTION,

 DECODE(MOD(ROWNUM,20),2,'PC',3,'FT',4,'METER',5,'KG',6,'CASE',7,'LBS',8,'DOZEN','EA') STOCK_UM,

 1 PLANNING_LEADTIME,

 'M' ORDER_POLICY,

 ROWNUM ORDER_POINT,

 1 SAFETY_STOCK_QTY,

 1 FIXED_ORDER_QTY,

 1 DAYS_OF_SUPPLY,

 1 MINIMUM_ORDER_QTY,

 9999 MAXIMUM_ORDER_QTY,

 '0' ENGINEERING_MSTR,

 DECODE(MOD(ROWNUM,20),1,'SHOP',2,'OFFICE',3,'JANITOR',4,'INVENTORY',5,'INVENTORY','FG') PRODUCT_CODE,

 DECODE(MOD(ROWNUM,7),1,'SHOP',2,'OFFICE',3,'JANITOR',4,'INVENTORY',5,'INVENTORY','FG') COMMODITY_CODE,

 'UNKNOWN' MFG_NAME,

 'UNKNOWN' MFG_PART_ID,

 DECODE(MOD(ROWNUM,3),1,'Y','N') FABRICATED,

 DECODE(MOD(ROWNUM,3),1,'N','Y') PURCHASED,

 'N' STOCKED,

 'N' DETAIL_ONLY,

 'N' DEMAND_HISTORY,

 'N' TOOL_OR_FIXTURE,

 'N' INSPECTION_REQD,

 0 WEIGHT,

 DECODE(MOD(ROWNUM,20),2,'PC',3,'FT',4,'METER',5,'KG',6,'CASE',7,'LBS',8,'DOZEN','EA') WEIGHT_UM,

 NULL DRAWING_ID,

 NULL DRAWING_REV_NO,

 NULL PREF_VENDOR_ID,

 NULL PRIMARY_WHS_ID,

 NULL PRIMARY_LOC_ID,

 NULL BACKFLUSH_WHS_ID,

 NULL BACKFLUSH_LOC_ID,

 NULL INSPECT_WHS_ID,

 NULL INSPECT_LOC_ID,

 'Y' MRP_REQUIRED,

 'N' MRP_EXCEPTIONS,

 'N' PRIVATE_UM_CONV,

 'Y' AUTO_BACKFLUSH,

 NULL PLANNER_USER_ID,

 NULL BUYER_USER_ID,

 DECODE(MOD(ROWNUM,7),1,'A',2,'B',3,'B','C') ABC_CODE,

 ROWNUM-100000 ANNUAL_USAGE_QTY,

 'N' INVENTORY_LOCKED,

 0 UNIT_MATERIAL_COST,

 0 UNIT_LABOR_COST,

 0 UNIT_BURDEN_COST,

 0 UNIT_SERVICE_COST,

 0 BURDEN_PERCENT,

 0 BURDEN_PER_UNIT,

 0 PURC_BUR_PERCENT,

 0 PURC_BUR_PER_UNIT,

 0 FIXED_COST,

 0 UNIT_PRICE,

 0 NEW_MATERIAL_COST,

 0 NEW_LABOR_COST,

 0 NEW_BURDEN_COST,

 0 NEW_SERVICE_COST,

 0 NEW_BURDEN_PERCENT,

 0 NEW_BURDEN_PERUNIT,

 0 NEW_FIXED_COST,

 '1111111' MAT_GL_ACCT_ID,

 '2222222' LAB_GL_ACCT_ID,

 '3333333' BUR_GL_ACCT_ID,

 '4444444' SER_GL_ACCT_ID,

 ABS(ROUND(SIN(ROWNUM*3.14159265/180*2)*100000,3)) QTY_ON_HAND,

 ABS(ROUND(SIN(ROWNUM*3.14159265/180*2)*100000,3)) QTY_AVAILABLE_ISS,

 ABS(ROUND(SIN(ROWNUM*3.14159265/180*2)*100000,3)) QTY_AVAILABLE_MRP,

 0 QTY_ON_ORDER,

 0 QTY_IN_DEMAND,

 RPAD('USER_1',30) USER_1,

 RPAD('USER_2',30) USER_2,

 RPAD('USER_3',30) USER_3,

 NULL USER_4,

 NULL USER_5,

 NULL USER_6,

 NULL USER_7,

 NULL USER_8,

 NULL USER_9,

 NULL USER_10,

 0 LT_PLUS_DAYS,

 0 LT_MINUS_DAYS,

 'A' STATUS,

 'Y' USE_SUPPLY_BEF_LT,

 0 QTY_COMMITTED,

 'TESTING' PRT_CREATE_USER_ID,

 SYSDATE PRT_CREATE_DATE

FROM

 DUAL

CONNECT BY

 LEVEL<=100000;

SELECT 'REMOVING DUPLICATE PARTS' FROM DUAL;

DELETE FROM

 PARTS_TEMP

WHERE

 (PART_ID,ORDER_POINT) IN

 (SELECT

 V.PART_ID,

 V.ORDER_POINT

 FROM

 PARTS_TEMP V,

 (SELECT

 PART_ID,

 MIN(ORDER_POINT) ORDER_POINT

 FROM

 PARTS_TEMP

 GROUP BY

 PART_ID

 HAVING

 COUNT(*)>1) M

 WHERE

 V.PART_ID=M.PART_ID

 AND V.ORDER_POINT>M.ORDER_POINT);

INSERT INTO

 PARTS

SELECT

 *

FROM

 PARTS_TEMP;

UPDATE

 PARTS P

SET

 (PRIMARY_WHS_ID,PRIMARY_LOC_ID)=(

 SELECT

 WAREHOUSE_ID,

 LOCATION_ID

 FROM

 (SELECT

 WAREHOUSE_ID,

 LOCATION_ID,

 ROWNUM RN

 FROM

 LOCATIONS)

 WHERE

 MOD(P.ORDER_POINT,2000)=RN);

UPDATE

 PARTS

SET

 PREF_VENDOR_ID=TRIM(TO_CHAR(ABS(ROUND(COS((MOD(ROWNUM,9000)*2+1)*3.14159265/180*51.491976)*10000000,0))))||'VEN'

WHERE

 PURCHASED='Y';

COMMIT;

EXEC DBMS_STATS.GATHER_TABLE_STATS(OWNNAME=>USER,TABNAME=>'PARTS',CASCADE=>TRUE);

SELECT 'INSERTING INTO PO_HEADER' FROM DUAL;

ALTER SESSION SET TRACEFILE_IDENTIFIER = 'INSERT_PO_HEADER';

INSERT INTO

 PO_HEADER_TEMP

SELECT

 'PO'||TO_CHAR(ROWNUM) PURC_ORDER_ID,

 TRIM(TO_CHAR(ABS(ROUND(COS((MOD(ROWNUM,9000)*2+1)*3.14159265/180*51.491976)*10000000,0))))||'VEN' VENDOR_ID,

 NULL CONTACT_FIRST_NAME,

 NULL CONTACT_LAST_NAME,

 NULL CONTACT_INITIAL,

 NULL CONTACT_POSITION,

 NULL CONTACT_HONORIFIC,

 NULL CONTACT_SALUTATION,

 NULL CONTACT_PHONE,

 NULL CONTACT_FAX,

 1 PURC_ORD_ADDR_NO,

 1 SHIPTO_ADDR_NO,

 TRUNC(SYSDATE-(COS(ROWNUM*3.14159265/180)*1000)) ORDER_DATE,

 TRUNC(SYSDATE-(COS(ROWNUM*3.14159265/180)*1000))+10 DESIRED_RECV_DATE,

 'MY_BUYER' BUYER,

 NULL FREE_ON_BOARD,

 'BEST WAY' SHIP_VIA,

 'REGULAR' SALES_TAX_GROUP_ID,

 DECODE(MOD(ROWNUM,6),1,'F',2,'R',3,'X','C') PO_STATUS,

 'N' BACK_ORDER,

 1 SELL_RATE,

 1 BUY_RATE,

 '1' ENTITY_ID,

 DECODE(MOD(ROWNUM,3),1,'Y','N') POSTING_CANDIDATE,

 NULL LAST_RECEIVED_DATE,

 0 TOTAL_AMT_ORDERED,

 0 TOTAL_AMT_RECVD,

 'N' MARKED_FOR_PURGE,

 'Y' EXCH_RATE_FIXED,

 TRUNC(SYSDATE-(COS(ROWNUM*3.14159265/180)*1000))+10 PROMISE_DATE,

 SYSDATE PRINTED_DATE,

 DECODE(MOD(ROWNUM,6),0,'A',1,'M',2,'D',3,'N','E') TERMS_DISC_TYPE,

 NULL EDI_BLANKET_FLAG,

 NULL EDI_BLANKET_PO_NO,

 1 CONTRACT_ID,

 1 SHIPTO_ID,

 DECODE(MOD(ROWNUM,6),0,'A',1,'M',2,'D',3,'N','E') TERMS_NET_TYPE,

 1 TERMS_NET_DAYS,

 NULL TERMS_NET_DATE,

 1 TERMS_DISC_DAYS,

 NULL TERMS_DISC_DATE,

 3 TERMS_DISC_PERCENT,

 'ON TIME' TERMS_DESCRIPTION,

 'USD' CURRENCY_ID,

 NULL WAREHOUSE_ID,

 SYSDATE CREATE_DATE,

 NULL CONTACT_MOBILE,

 NULL CONTACT_EMAIL,

 NULL USER_1,

 NULL USER_2,

 NULL USER_3,

 NULL USER_4,

 NULL USER_5,

 NULL USER_6,

 NULL USER_7,

 NULL USER_8,

 NULL USER_9,

 NULL USER_10,

 'DEFAULT' UDF_LAYOUT_ID,

 'TESTING' PO_CREATE_USER_ID

FROM

 DUAL

CONNECT BY

 LEVEL<=500000;

INSERT INTO

 PO_HEADER

SELECT

 *

FROM

 PO_HEADER_TEMP;

COMMIT;

EXEC DBMS_STATS.GATHER_TABLE_STATS(OWNNAME=>USER,TABNAME=>'PO_HEADER',CASCADE=>TRUE);

SELECT 'INSERTING INTO PO_LINES' FROM DUAL;

ALTER SESSION SET TRACEFILE_IDENTIFIER = 'INSERT_PO_LINES';

INSERT INTO PO_LINE_TEMP (

 PURC_ORDER_ID,

 LINE_NO,

 PART_ID,

 VENDOR_PART_ID,

 SERVICE_ID,

 USER_ORDER_QTY,

 ORDER_QTY,

 PURCHASE_UM,

 UNIT_PRICE,

 FIXED_CHARGE,

 GL_EXPENSE_ACCT_ID,

 SALES_TAX_GROUP_ID,

 PRODUCT_CODE,

 COMMODITY_CODE,

 DESIRED_RECV_DATE,

 TRADE_DISC_PERCENT,

 EST_FREIGHT,

 LINE_STATUS,

 TOTAL_ACT_FREIGHT,

 TOTAL_USR_RECD_QTY,

 TOTAL_RECEIVED_QTY,

 TOTAL_AMT_RECVD,

 TOTAL_AMT_ORDERED,

 TOTAL_DISPATCH_QTY,

 TOTAL_USR_DISP_QTY,

 ALLOCATED_QTY,

 FULFILLED_QTY)

SELECT /*+ ORDERED */

 PURC_ORDER_ID,

 ORDER_POINT-START_LINE+1,

 PART_ID,

 PART_ID,

 NULL,

 10,

 10,

 DECODE(MOD(ROWNUM,20),2,'PC',3,'FT',4,'METER',5,'KG',6,'CASE',7,'LBS',8,'DOZEN','EA'),

 1099.99,

 0,

 NULL,

 NULL,

 PRODUCT_CODE,

 COMMODITY_CODE,

 TRUNC(SYSDATE-1000+ROWNUM/1000),

 0,

 0,

 'A',

 0,

 0,

 0,

 0,

 0,

 0,

 0,

 0,

 0

FROM

 (SELECT

 'PO'||TO_CHAR(ROWNUM) PURC_ORDER_ID,

 ROWNUM RN,

 ABS(SIN(ROWNUM*3.14159265/180))*90000 START_LINE,

 MOD(ROWNUM,50)+1 LINES

 FROM

 DUAL

 CONNECT BY

 LEVEL<=500000) POL,

 PARTS P

WHERE

 P.ORDER_POINT BETWEEN START_LINE AND (START_LINE+LINES-1);

INSERT INTO

 PO_LINE

SELECT

 *

FROM

 PO_LINE_TEMP;

COMMIT;

EXEC DBMS_STATS.GATHER_TABLE_STATS(OWNNAME=>USER,TABNAME=>'PO_LINE',CASCADE=>TRUE);

SELECT 'UPDATE-ROLLBACK TEST' FROM DUAL;

ALTER SESSION SET TRACEFILE_IDENTIFIER = 'ROLLBACK_TEST';

UPDATE

 PO_LINE

SET

 PART_ID='8729425PART'

WHERE

 PART_ID BETWEEN '3000000PART' AND '6576035PART';

ROLLBACK;

SELECT 'INSERT-NARROW-TABLE' FROM DUAL;

ALTER SESSION SET TRACEFILE_IDENTIFIER = 'NARROW_TABLE';

INSERT INTO

 NARROW

SELECT

 ROWNUM,

 NULL

FROM

 DUAL

CONNECT BY

 LEVEL<=900000;

COMMIT;

SELECT

 SUBSTR(SN.NAME,1,25) STAT_NAME,

 MS.VALUE

FROM

 V$STATNAME SN,

 V$MYSTAT MS

WHERE

 SN.NAME IN ('table fetch by rowid','table scan rows gotten','table fetch continued row','table scan blocks gotten','consistent

gets')

 AND SN.STATISTIC#=MS.STATISTIC#

ORDER BY

 SN.NAME;

UPDATE

 NARROW

SET

 C1=ROUND(SIN(C1*3.14159265/180),2),

 C2=C1;

SELECT

 SUBSTR(SN.NAME,1,25) STAT_NAME,

 MS.VALUE

FROM

 V$STATNAME SN,

 V$MYSTAT MS

WHERE

 SN.NAME IN ('table fetch by rowid','table scan rows gotten','table fetch continued row','table scan blocks gotten','consistent

gets')

 AND SN.STATISTIC#=MS.STATISTIC#

ORDER BY

 SN.NAME;

UPDATE

 NARROW

SET

 C1=ROUND(SIN(C2*3.14159265/180),10);

UPDATE

 NARROW

SET

 C2=C1;

SELECT

 SUBSTR(SN.NAME,1,25) STAT_NAME,

 MS.VALUE

FROM

 V$STATNAME SN,

 V$MYSTAT MS

WHERE

 SN.NAME IN ('table fetch by rowid','table scan rows gotten','table fetch continued row','table scan blocks gotten','consistent

gets')

 AND SN.STATISTIC#=MS.STATISTIC#

ORDER BY

 SN.NAME;

SELECT

 *

FROM

 NARROW;

SELECT

 SUBSTR(SN.NAME,1,25) STAT_NAME,

 MS.VALUE

FROM

 V$STATNAME SN,

 V$MYSTAT MS

WHERE

 SN.NAME IN ('table fetch by rowid','table scan rows gotten','table fetch continued row','table scan blocks gotten','consistent

gets')

 AND SN.STATISTIC#=MS.STATISTIC#

ORDER BY

 SN.NAME;

DELETE FROM

 NARROW

WHERE

 C1<0;

COMMIT;

SELECT 'TABLE AND INDEX STATS' FROM DUAL;

ALTER SESSION SET EVENTS '10046 TRACE NAME CONTEXT OFF'

EXEC DBMS_STATS.GATHER_TABLE_STATS(OWNNAME=>USER,TABNAME=>'NARROW',CASCADE=>TRUE);

SELECT

 TABLE_NAME,

 NUM_ROWS,

 BLOCKS,

 AVG_ROW_LEN

FROM

 USER_TABLES

WHERE

 TABLE_NAME IN ('PO_HEADER','PO_LINE','PARTS','VENDORS','LOCATIONS','UMS','NARROW')

ORDER BY

 TABLE_NAME;

SELECT

 SUBSTR(TABLE_NAME,1,10) TABLE_NAME,

 SUBSTR(INDEX_NAME,1,15) INDEX_NAME,

 BLEVEL,

 LEAF_BLOCKS,

 DISTINCT_KEYS,

 AVG_LEAF_BLOCKS_PER_KEY,

 AVG_DATA_BLOCKS_PER_KEY,

 CLUSTERING_FACTOR

FROM

 USER_INDEXES

WHERE

 TABLE_NAME IN ('PO_HEADER','PO_LINE','PARTS','VENDORS','LOCATIONS','UMS','NARROW')

ORDER BY

 TABLE_NAME,

 INDEX_NAME;

ALTER SYSTEM FLUSH BUFFER_CACHE;

ALTER SYSTEM FLUSH BUFFER_CACHE;

ALTER SESSION SET TRACEFILE_IDENTIFIER = 'SELECT_TEST';

ALTER SESSION SET EVENTS '10046 TRACE NAME CONTEXT FOREVER, LEVEL 8';

SELECT

 PO.VENDOR_ID,

 P.PRODUCT_CODE,

 P.STOCK_UM,

 SUM(POL.ORDER_QTY) ORDER_QTY

FROM

 PO_HEADER PO,

 PO_LINE POL,

 PARTS P

WHERE

 PO.ORDER_DATE BETWEEN TRUNC(SYSDATE-90) AND TRUNC(SYSDATE)

 AND PO.PURC_ORDER_ID=POL.PURC_ORDER_ID

 AND POL.PART_ID=P.ID

GROUP BY

 PO.VENDOR_ID,

 P.PRODUCT_CODE,

 P.STOCK_UM;

SELECT

 POL.PART_ID,

 P.DESCRIPTION,

 MAX(DESIRED_RECV_DATE) LAST_RECEIVE_DATE

FROM

 PO_LINE POL,

 PARTS P

WHERE

 P.PRODUCT_CODE='FG'

 AND P.ABC_CODE='C'

 AND P.PART_ID=POL.PART_ID

GROUP BY

 POL.PART_ID,

 P.DESCIPTION;

SELECT

 COUNT(*) LOCATIONS

FROM

 LOCATIONS;

SELECT

 PRODUCT_CODE,

 COUNT(*) PARTS_LARGE_WH

FROM

 (SELECT

 WAREHOUSE_ID

 FROM

 LOCATIONS

 GROUP BY

 WAREHOUSE_ID

 HAVING

 COUNT(*)>160) W,

 PARTS P

WHERE

 W.WAREHOUSE_ID=P.PRIMARY_WHS_ID

GROUP BY

 PRODUCT_CODE

ORDER BY

 PRODUCT_CODE;

SELECT

 COUNT(*)

FROM

 PARTS

WHERE

 QTY_ON_HAND>1000;

SELECT

 COUNT(*)

FROM

 VENDORS

WHERE

 ZIPCODE>' 44444';

SELECT

 COUNT(*)

FROM

 PO_LINE POL,

 PARTS P

WHERE

 POL.PURC_ORDER_ID BETWEEN '10000' AND '20000'

 AND POL.PART_ID=P.PART_ID;

SELECT

 PART_ID,

 ABC_CODE,

 PRODUCT_CODE,

 MAX(QTY_ON_HAND) OVER (PARTITION BY PRODUCT_CODE,ABC_CODE) MAX_QTY_PRD_ABC,

 MIN(QTY_ON_HAND) OVER (PARTITION BY PRODUCT_CODE,ABC_CODE) MIN_QTY_PRD_ABC,

 DENSE_RANK() OVER (PARTITION BY PRODUCT_CODE,ABC_CODE ORDER BY QTY_ON_HAND) DR_QTY_PRD_ABC,

 DENSE_RANK() OVER (PARTITION BY PREF_VENDOR_ID ORDER BY ORDER_POINT) DR_OP_VEND

FROM

 PARTS

ORDER BY

 PART_ID;

SELECT

 V.VENDOR_ID,

 V.VENDOR_NAME

FROM

 VENDORS V,

 (SELECT DISTINCT

 PO.VENDOR_ID

 FROM

 PO_HEADER PO,

 PO_LINE POL,

 PARTS P

 WHERE

 PO.PURC_ORDER_ID=POL.PURC_ORDER_ID

 AND POL.PART_ID=P.PART_ID

 AND P.PRODUCT_CODE='FG') PV

WHERE

 V.VENDOR_ID=PV.VENDOR_ID(+)

 AND PV.VENDOR_ID IS NULL

ORDER BY

 V.VENDOR_ID;

SELECT

 PART_ID,

 DESCRIPTION,

 QTY_ON_HAND,

 RANK() OVER (PARTITION BY PRODUCT_CODE ORDER BY QTY_ON_HAND DESC NULLS LAST) RANK_PC_QTY,

 AVG(QTY_ON_HAND) OVER (PARTITION BY PRODUCT_CODE ORDER BY QTY_ON_HAND) AVG_PC_QTY,

 MIN(QTY_ON_HAND) OVER (PARTITION BY PRODUCT_CODE ORDER BY QTY_ON_HAND) MIN_PC_QTY,

 MAX(QTY_ON_HAND) OVER (PARTITION BY PRODUCT_CODE ORDER BY QTY_ON_HAND) MAX_PC_QTY,

 COUNT(UNIT_MATERIAL_COST) OVER (PARTITION BY PRODUCT_CODE ORDER BY UNIT_MATERIAL_COST) COUNT_PC,

 RANK() OVER (PARTITION BY COMMODITY_CODE ORDER BY QTY_ON_HAND DESC NULLS LAST) RANK_CC_QTY,

 AVG(QTY_ON_HAND) OVER (PARTITION BY COMMODITY_CODE ORDER BY QTY_ON_HAND) AVG_CC_QTY,

 MIN(QTY_ON_HAND) OVER (PARTITION BY COMMODITY_CODE ORDER BY QTY_ON_HAND) MIN_CC_QTY,

 MAX(QTY_ON_HAND) OVER (PARTITION BY COMMODITY_CODE ORDER BY QTY_ON_HAND) MAX_CC_QTY,

 COUNT(QTY_ON_HAND) OVER (PARTITION BY COMMODITY_CODE ORDER BY QTY_ON_HAND) COUNT_CC,

 RANK() OVER (PARTITION BY NVL(PREF_VENDOR_ID,'IN_HOUSE_FAB') ORDER BY QTY_ON_HAND DESC NULLS LAST) RANK_VENDOR_QTY,

 AVG(QTY_ON_HAND) OVER (PARTITION BY NVL(PREF_VENDOR_ID,'IN_HOUSE_FAB') ORDER BY QTY_ON_HAND) AVG_VENDOR_QTY,

 MIN(QTY_ON_HAND) OVER (PARTITION BY NVL(PREF_VENDOR_ID,'IN_HOUSE_FAB') ORDER BY QTY_ON_HAND) MIN_VENDOR_QTY,

 MAX(QTY_ON_HAND) OVER (PARTITION BY NVL(PREF_VENDOR_ID,'IN_HOUSE_FAB') ORDER BY QTY_ON_HAND) MAX_VENDOR_QTY,

 COUNT(QTY_ON_HAND) OVER (PARTITION BY PREF_VENDOR_ID ORDER BY QTY_ON_HAND) COUNT_VENDOR

FROM

 PARTS

ORDER BY

 PART_ID;

SELECT

 PRODUCT_CODE,

 RANK(1) WITHIN GROUP (ORDER BY QTY_ON_HAND DESC NULLS LAST) UNIT_PRICE,

 RANK(2) WITHIN GROUP (ORDER BY QTY_ON_HAND DESC NULLS LAST) UNIT_PRICE,

 RANK(3) WITHIN GROUP (ORDER BY QTY_ON_HAND DESC NULLS LAST) UNIT_PRICE,

 RANK(4) WITHIN GROUP (ORDER BY QTY_ON_HAND DESC NULLS LAST) UNIT_PRICE,

 RANK(5) WITHIN GROUP (ORDER BY QTY_ON_HAND DESC NULLS LAST) UNIT_PRICE

FROM

 PARTS

GROUP BY

 PRODUCT_CODE

ORDER BY

 PRODUCT_CODE;

SELECT

 PO.PART_ID,

 P.DESCRIPTION,

 PO.VENDOR_ID,

 PO.CREATE_DATE,

 PO.UNIT_PRICE,

 PO.LAST_VENDOR_ID,

 PO.LAST_CREATE_DATE,

 PO.LAST_UNIT_PRICE,

 P.PRODUCT_CODE,

 P.COMMODITY_CODE

FROM

 (SELECT

 POL.PART_ID,

 PO.VENDOR_ID,

 TRUNC(NVL(POL.POL_CREATE_DATE,PO.CREATE_DATE)) CREATE_DATE,

 POL.UNIT_PRICE,

 LEAD(PO.VENDOR_ID,1,NULL) OVER (PARTITION BY PART_ID ORDER BY NVL(POL.POL_CREATE_DATE,PO.CREATE_DATE) DESC) LAST_VENDOR_ID,

 TRUNC(LEAD(NVL(POL.POL_CREATE_DATE,PO.CREATE_DATE),1,NULL) OVER (PARTITION BY PART_ID ORDER BY

NVL(POL.POL_CREATE_DATE,PO.CREATE_DATE) DESC)) LAST_CREATE_DATE,

 LEAD(POL.UNIT_PRICE,1,NULL) OVER (PARTITION BY PART_ID ORDER BY NVL(POL.POL_CREATE_DATE,PO.CREATE_DATE) DESC) LAST_UNIT_PRICE

 FROM

 PO_HEADER PO,

 PO_LINE POL

 WHERE

 PO.ID=POL.PURC_ORDER_ID

 AND PO.CREATE_DATE>TRUNC(SYSDATE-720)

 ORDER BY

 POL.PART_ID,

 NVL(POL.POL_CREATE_DATE,PO.CREATE_DATE) DESC) PO,

 PARTS P

WHERE

 PO.PART_ID=P.PART_ID

 AND PO.CREATE_DATE>TRUNC(SYSDATE-90)

 AND (PO.VENDOR_ID<>NVL(PO.LAST_VENDOR_ID,'-')

 OR PO.CREATE_DATE>(NVL(PO.LAST_CREATE_DATE,SYSDATE-1024)+180)

 OR PO.UNIT_PRICE<>NVL(PO.LAST_UNIT_PRICE,-1));

SELECT 'FINISHED' FROM DUAL;

ALTER SESSION SET EVENTS '10046 TRACE NAME CONTEXT OFF'

SPOOL OFF

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Maran

Viswarayar

Posts: 4,196

Re: Larger vs. Small data block

Posted: Jun 16, 2008 10:25 AM in response to: Charles Hooper
Reply

From: Cecil,Singapore

Registered: 9/23/05

Charles

I am following the entire thread..Got amazed with skills and Patience...

Finally i will participate in the forums...using your scripts

Excellent Work !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 16, 2008 10:47 AM in response to: Maran Viswarayar
Reply

> I am following the entire thread..Got amazed with

> skills and Patience...

>

> Finally i will participate in the forums...using your

> scripts

>

> Excellent Work !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Maran,

Thanks. It required 8+ hours to build the script to generate the non-sequential data, and I have not had a chance to formally

test it yet to compare performance.

During the intial test run (into a 16KB database left over from previous testing), the insert into PO_LINE_TEMP required a bit

less then 4 minutes to complete, while the copy from PO_LINE_TEMP to PO_LINE required about 75 minutes. The initial creation

of the NARROW table completed quickly, but updates on that table were painfully slow due to PCTFREE not being specified for

the table. As I mentioned, I have only had a brief chance to look the output of the initial test run due to time contraints.

Let me know the results if you perform the test. You may want to pre-size the USER_DATA tablespace to 8GB (or larger) if you

use the setup that I posted in an earlier reply to this thread.

damorgan, if you are interested in trying the script on your RAC setup, let me know and I will forward the script to you.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Maran

Viswarayar

Posts: 4,196

From: Cecil,Singapore

Registered: 9/23/05

Re: Larger vs. Small data block

Posted: Jun 16, 2008 10:56 AM in response to: Charles Hooper
Reply

Thanks

I will try

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 16, 2008 11:29 AM in response to: Steve Karam
Reply

>

> Am I translating this right? You're basically saying

> that we should take the simple assumption that I did

> it wrong in favor of the possibility something else

> was amiss? I was actually quite liking some of the

> possibilities you brought up in your interpretations

> up to this point. This just seems like giving up.

>

Good news, I think I can emulate your problem - and give you the solution. (That's assuming my guesses about your setup are

correct).

I'm just running a test to completion - and I'll let you know the results.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

"The greatest enemy of knowledge is not ignorance,

it is the illusion of knowledge." Stephen Hawking.

Faust

Posts: 797

From: Middle Europe

Registered: 1/1/07

Re: Larger vs. Small data block

Posted: Jun 16, 2008 12:07 PM in response to: Charles Hooper
Reply

> > using your scripts

> >

> > Excellent Work !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Hi Charles,

is it possible to get your script per email or to download it from specific web-location as already formated file?

Thanks!

David_Aldridge

Posts: 97

Registered: 4/22/08

Re: Larger vs. Small data block

Posted: Jun 16, 2008 12:16 PM in response to: user619401
Reply

The longer this thread goes on, the more I feel like just throwing my hands in the air and saying "8kb it is!" ... OLTP,

warehouse, whatever.

Can I get an "amen" on that?

Hans

Forbrich

Re: Larger vs. Small data block

Posted: Jun 16, 2008 12:25 PM in response to: David_Aldridge
Reply

Posts: 7,483

From: AB, Canada

Registered: 3/13/99

> The longer this thread goes on, the more I feel like

> just throwing my hands in the air and saying "8kb it

> is!" ... OLTP, warehouse, whatever.

>

> Can I get an "amen" on that?

I have tried to 'amen' that several times.

Unless there is a compelling reason and other alternatives have been exhausted, using the default is often good enough. It's a

happy compromise that will work well in most cases. There are, of course, exceptions.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 16, 2008 3:58 PM in response to: Charles Hooper
Reply

Definitely interested.

I'm sitting in Denver International Airport awaiting my delayed flight to New Orleans that will hopefully get me in for my

presentations at ODTUG's Kaleidoscope tomorrow.

Running a RAC class Wed/Thu/Fri so I will have available at least four 2 node clusters when class is over.

Thanks.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 16, 2008 4:03 PM in response to: David_Aldridge
Reply

You can from me.

I've no doubt you can from Brynn too.

Seems to me it is about time for Greg, Graham, and a few others inside to belly up to the keyboard, write a definitive

statement on the subject, and post it to OTN and metalink.

This "controversy" leads to wasted time, wasted effort, and in the end makes Oracle look bad because it seems to have no

official opinion on the matter.

While you're at it please also cut down the body of multiple block sizes in a single database and a few other oft repeated

myths.

Thank you.

$@m!

@$m@

Posts: 537

From: AUH

Registered: 7/3/07

Re: Larger vs. Small data block

Posted: Jun 16, 2008 4:15 PM in response to: Charles Hooper
Reply

It took me lot of time to go though the complete script. I have some issues in understanding it, I will post my doubts.

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 16, 2008 4:48 PM in response to: Jonathan Lewis
Reply

>

> Good news, I think I can emulate your problem - and

> give you the solution. (That's assuming my guesses

> about your setup are correct).

>

Headline results for update:

16KB Block size: 1 hour 36 minutes 45.06 seconds

 8KB Block size: 1 minute 1.08 seconds

 4KB Block size: 1 minute 28.00 seconds

The tablespaces are locally managed with a uniform extent size of 128KB and using ASSM which, I think, is in accordance with

the description given by Steve Karam.

The SQL for creating, populating, and updating the table is given below.

You will note that in my test case the rows are very short, and the updated column starts out null. A typical row starts at 9

bytes (11 if you count the row index entry), and grows to 15 (17) bytes. This means that the default pctfree of 10 is much too

small, and a large number of rows will migrate leaving a 9 (11) byte forwarding address. This means that the table needs to be

defined with a pctfree of around 35 if it is avoid problems with rows migrating. (In my second test run I used 50 to avoid

having to be too exact).

A combination of short rows, mass row extension, poor choice of pctfree, and large blocks seems to cause ASSM some problems

identifying a block that will be able to accept a migrated row - and it uses a lot of resources searching for a suitable

block.

There was a bug of this nature in early releases of ASSM, but I thought it had been fixed. Possibly the fix had an

arithmetical component that was based on an 8KB block size and was not tested in extreme cases against larger block sizes.

execute dbms_random.seed(0);

drop table t1;

create table t1 (

 n1 number,

 n2 number

)

-- pctfree 50

tablespace test_4k_assm

;

insert into t1

with generator as (

 select --+ materialize

 rownum id

 from all_objects

 where rownum <= 3000

)

select

 trunc(dbms_random.value(10000000,100000000)) n1,
 to_number(null) n2

-- trunc(dbms_random.value(10000000,100000000)) n2

from

 generator v1,

 generator v2

where

 rownum <= 830000

;

commit;

alter session set events '10046 trace name context forever, level 8';

update t1 set n2 = n1;

As part of my test code, I also took snapshots of v$mystat, v$session_event, and x$kcbsw/x$kcbwh (see:

http://www.jlcomp.demon.co.uk/buffer_usage.html for further details on the last one). Here are some of the key statistics:

16KB Block size

 pctfree 10 pctfree 50

Time 1:36:45.06 21.07

Wait time 2.94 12.65

db block get 845,084,110 848,345

redo entries 2,161,504 830,503

redo size 491,906,180 186,504,584

Critical buffer get calls

ktspfwh10: ktspscan_bmb 144,587,672 0

ktspbwh1: ktspfsrch 696,965,277 0

 8KB Block size

 pctfree 10 pctfree 50

Time 1:01.08 20.01

Wait time 19.16 11.69

db block get 5,526,488 848,321

redo entries 2,172,130 830,399

redo size 492,560,476 186,542,972

Critical buffer get calls

ktspfwh10: ktspscan_bmb 1,320,444 0

ktspbwh1: ktspfsrch 664,235 0

 4KB Block size

 pctfree 10 pctfree 50

Time 1:28.00 21.04

Wait time 39.47 13.01

db block get 5,547,182 851,170

redo entries 2,183,488 830,458

redo size 493,455,356 186,632,124

Critical buffer get calls

ktspfwh10: ktspscan_bmb 1,321,618 0

ktspbwh1: ktspfsrch 668,945 0

Most of the wait time recorded in my tests was due to log buffer space waits.

You will note that my model is obviously not an exact match for the details Steve Karam gave - compared to his figures, the

increase I saw in current gets is too large and the increase in redo log may not be large enough to be particularly

significant. This suggests that a smaller percentage of rows in his data were subject to migration, and that some of the

excess work may have been related to delayed block cleanout.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

"The greatest enemy of knowledge is not ignorance,

it is the illusion of knowledge." (Stephen Hawking)

David_Aldridge

Posts: 97

Registered: 4/22/08

Re: Larger vs. Small data block

Posted: Jun 16, 2008 8:09 PM in response to: Jonathan Lewis
Reply

Jonathan -- very interesting indeed.

I was thinking about how to turn this situation around to find a list of signs that might indicate that such a problem is

being experienced. Do you think it would then be fair to say that a notable percentage of migrated rows + ASSM + block size

greater than 8kb ought at least be enough to raise suspicion?

Steve

Karam

Posts: 126

From: Virginia Beach, VA

Registered: 9/14/05

Re: Larger vs. Small data block

Posted: Jun 16, 2008 8:31 PM in response to: David_Aldridge
Reply

Okay, so it's harder to leave a thread alone than I thought.

Jonathan, your observations are very interesting. While pctfree could be said to be the centerpiece of your test, it still

seems to point to a possible ASSM/large-block deficiency (due to the drastically skewed results between 4, 8, and 16k). What

version of Oracle did you run for the test (sorry if you already gave it, I may have missed it)?

David, that may be enough to warrant some extra investigation; however, I'd probably add at least a check on the avg. row

length and PCTFREE as well based upon Jonathan's test case. I'm just thinking of a table with migrated/chained rows in a 32k

blocksize ASSM tablespace, but the table also happens to have a heavily used LOB.

Howardjr

Posts: 11

Registered: 6/7/07

Re: Larger vs. Small data block

Posted: Jun 17, 2008 12:10 AM in response to: Jonathan Lewis
Reply

[a] poor choice of pctfree, and large blocks seems to cause ASSM some problems identifying a block that will be able to accept

a migrated row

See. I told you ASSM was evil!

:-)

Good to see you nailing this one down a bit.

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 17, 2008 1:10 AM in response to: David_Aldridge
Reply

> The longer this thread goes on, the more I feel like just throwing my hands in the air and saying "8kb itis!" ... OLTP,

warehouse, whatever.

>

> Can I get an "amen" on that?

Amen brother!

This is precisely my position on this topic. I've mentioned it before somewhere I believe...I call 8k the Goldilocks of block

sizes: Not to big, not to small, just right! There is a reason that 8192 is the default for db_block_size. Stick with the

defaults unless you have a proven and understood reason to deviate (the key word being understood!).

If you are noticing more than a few percent difference by changing block sizes, there is likely something you are not

noticing!

--

Regards,

Greg Rahn

http://structureddata.org

SeanMacGC

Posts: 7

Registered: 10/30/06

Re: Larger vs. Small data block

Posted: Jun 17, 2008 5:03 AM in response to: Jonathan Lewis
Reply

Light finally penetrates the heat!

Very interesting Jonathan.

So, all distilled to: it depends!

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 17, 2008 5:53 AM in response to: SeanMacGC
Reply

I've been away for the past week or so.

Have I missed much ?

Cheers ;)

Richard Foote

http://richardfoote.wordpress.com/

Terrible

Posts: 334

From: York, UK

Registered: 6/25/04

Re: Larger vs. Small data block

Posted: Jun 17, 2008 6:10 AM in response to: Richard Foote
Reply

Same old, same old really......

Xxx made a statement in response to the OP.

The 'usual suspects' jumped all over it and asked for some evidence.

Xxx didn't produce any, from what I remember it was because he has a degree from an 'Ivy league University' and the others

wouldn't share their credentials.

Some really interesting test cases and technical discussion followed.....with the usual level of baiting and finger pointing

of course.

I don't think the OP actually got a definitive answer although I'm willing to bet he left scratching his sore head and decided

to stick with 8k blocks....

Did I miss anything.....?

orafad

Posts: 4,976

From: Sweden

Registered: 2/4/99

Re: Larger vs. Small data block

Posted: Jun 17, 2008 6:11 AM in response to: Richard Foote
Reply

> I've been away for the past week or so.

How was Stockholm? :)

Jonathan

Lewis

Re: Larger vs. Small data block

Posted: Jun 17, 2008 7:22 AM in response to: Steve Karam
Reply

Posts: 786

From: UK

Registered: 1/23/07

> Jonathan, your observations are very

> interesting. While pctfree could be said to be the

> centerpiece of your test, it still seems to point to

> a possible ASSM/large-block deficiency (due to the

> drastically skewed results between 4, 8, and 16k).

> What version of Oracle did you run for the test

> (sorry if you already gave it, I may have missed

> it)?

The fact that the pctfree highlighted the bug doesn't make the pctfree the guilty party; I think there's no question that the

bug is in the ASSM code, and perhaps it can only become visible in 16KB (and larger) blocks. It's possible that people haven't

seen the bug before simply because the problem doesn't appear often and then becomes self-correcting over time.

The test case I've produced just manages to hit the combination of circumstances that turns what is normally a minor error

into a total disaster by picking a pctfree that forces a lot of row migration. I certainly wouldn't want to suggest that the

pctfree was the cause

I created the test on 9.2.0.8 - because I think that's the version you said your client was on. The test case shows the same

behaviour on 10.2.0.3 and 11.1.0.6

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

"The greatest enemy of knowledge is not ignorance,

it is the illusion of knowledge." Stephen Hawking.

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 17, 2008 7:37 AM in response to: David_Aldridge
Reply

> Jonathan -- very interesting indeed.

>

> I was thinking about how to turn this situation

> around to find a list of signs that might indicate

> that such a problem is being experienced. Do you

> think it would then be fair to say that a notable

> percentage of migrated rows + ASSM + block size

> greater than 8kb ought at least be enough to raise

> suspicion?

Tricky, because dbms_stats() doesn't collect information about chained or migated rows (I haven't checked that for 11g

though), and so far we only see the problem appearing with migrated rows. It might apply to chained rows, it might apply when

a delete/insert takes place near the boundary between "full" and "not full".

It doesn't even need to be a notable percentage of migrated rows - what if every row you migrate causes oracle to leave a

block that's been migrated from as a 'bust be checked block'. You could be in a position where 1,000 migrated rows turns into

1,000 blocks always being checked for every single row insert. This is speculation of course - until we know the nature of the

bug we can't work out a complete strategy for identification.

Your suggestion could give us a reason for testing a table - but might miss some tables: but that's better than nothing.

Critically, the only reason for testing is if you think a process is doing too many current gets for the volumn of data

inserted (which typically ought to be be in the ballpark of 2 + 3 per index).

So if you have any suspect tables, according to your suggested rule, a simple 'insert row into table' might confirm your

suspicion. You might have to do this from several different sessions though, as the initial block selected depends on your

process id - and you may get lucky/unlucky on the first attempt.

I believe there's a procedure to do an official fix on bitmap blocks which have gone out of synch with the data - possibly in

package dbms_space_admin. Perhaps this would be a valid reason for using that package.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

"The greatest enemy of knowledge is not ignorance,

it is the illusion of knowledge." Stephen Hawking.

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 17, 2008 7:40 AM in response to: Terrible
Reply

>

> I don't think the OP actually got a definitive answer

> although I'm willing to bet he left scratching his

> sore head and decided to stick with 8k blocks....

>

Perhaps the best answer to the question should be: "If you need to ask what size your blocks should be, the answer is 8KB".

(Who was it who said: "If you need to ask how much it costs to run a motor yacht, you can't afford to own a motor yacht." ?)

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

"The greatest enemy of knowledge is not ignorance,

it is the illusion of knowledge." Stephen Hawking.

Terrible

Posts: 334

From: York, UK

Registered: 6/25/04

Re: Larger vs. Small data block

Posted: Jun 17, 2008 8:54 AM in response to: Jonathan Lewis
Reply

I think that was probably the big man Larry himself:

I remember reading a quick story about him in Computer Weekly a while ago, from what I remember he'd tried to buy a new yacht

on his credit card but the transaction went above his available limit(!).

Now that sort of thing is imaginable for your everyday person however my jaw dropped when the article stated his credit card

limit was $500 million!

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 17, 2008 9:51 AM in response to: Terrible
Reply

> Did I miss anything.....?

You seemed to sum it all quite well except perhaps for the fact tuning by "intuition" is now an approved method. I'm going to

try it out tomorrow when I get to work; just sit on the floor with my legs crossed, eyes closed and just "feel" with my senses

what any potential performance problems might be. I honestly believe with the right candles, background music, prevailing wind

direction and the right harmonies in my humming, any evil spirits within the Oracle databases will make themselves visible and

I'll be able to just fix things as appropriate.

It's a real shame Oracle doesn't have a 42K block size by default ...

Cheers ;)

Richard Foote

http://richardfoote.wordpress.com/

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 17, 2008 9:53 AM in response to: orafad
Reply

> How was Stockholm? :)

Great !!

http://richardfoote.wordpress.com/2008/06/17/ot-stockholm-and-utrecht/

Cheers

Richard Foote

http://richardfoote.wordpress.com/

Reega

Posts: 301

From: USA

Registered: 12/21/99

Re: Larger vs. Small data block

Posted: Jun 17, 2008 10:00 AM in response to: Richard Foote
Reply

Richard,

I am excited to attend your class in Seattle. See you here in US soon :)

I will get chance to see Jonathan and Kyte again

Why would't you present in hotsos seminar ? or Did I miss it ?

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 17, 2008 10:19 AM in response to: Reega
Reply

Hi Reega

Just note the PSOUG website still has the wrong list of topics. They're as specified here:

http://richardfoote.wordpress.com/oracle-index-internals-seminar/

Unfortunately, I only have so much time within the year I can devote to training, maybe next year I'll get the time to present

at Hotsos.

Looking forward to meeting you soon :)

Cheers

Richard Foote

http://richardfoote.wordpress.com/

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 17, 2008 12:00 PM in response to: Jonathan Lewis
Reply

You wrote:

"I think there's no question that the bug is in the ASSM code, and perhaps it can only become visible in 16KB (and larger)

blocks."

Which brings us full circle to the statement Brynn made to me and that I have repeated several times in this thread. Oracle

only tests 8K blocks. So I have no doubt there are many issues to be discovered by those that follow holistic rather than

scientific advise with respect to block sizes. If a DBA is not going to use an 8K block size they'd better have something far

more credible to go on than an opinion unsupported by rigorous testing.

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 17, 2008 12:03 PM in response to: Richard Foote
Reply

I understand tuning to David Bowie yields fewer waits. <g>

damorgan

Posts: 4,146

From: Seattle, Washington

Registered: 10/20/03

Re: Larger vs. Small data block

Posted: Jun 17, 2008 12:05 PM in response to: Richard Foote
Reply

I'm going to have to beat the webmaster with a curly brace. I will make the change personally when I get back to Seattle

Wednesday ... my Wednesday. <g>

Hans

Forbrich

Re: Larger vs. Small data block

Posted: Jun 17, 2008 2:50 PM in response to: damorgan
Reply

(...

Posts: 663

From: Alberta, Canada

Registered: 11/17/06

> I'm going to have to beat the webmaster with a curly

> brace. I will make the change personally when I get

> back to Seattle Wednesday ... my Wednesday. <g>

(ditto, my session <g>)

Greg

Rahn

Posts: 61

From: Redwood Shores,

California

Registered: 10/3/07

Re: Larger vs. Small data block

Posted: Jun 17, 2008 3:56 PM in response to: damorgan
Reply

> Seems to me it is about time for Greg, Graham, and a few others inside to belly up to the keyboard, write

> a definitive statement on the subject, and post it to OTN and metalink.

>

> This "controversy" leads to wasted time, wasted effort, and in the end makes Oracle look bad because

> it seems to have no official opinion on the matter.

> While you're at it please also cut down the body of multiple block sizes in a single database and a few other oft repeated

myths.

It seems that some documentation that exists is either outdated, incomplete, or perhaps unintentionally misleading. Let me

know if you find such documentation.

I do know that the RWPG has worked on parts of the Performance Tuning Guide and I just was reading through it and do see a

statement that I clearly understand and support:

"The use of multiple block sizes in a single database instance is not encouraged because of manageability issues."[1]

Now, I don't see those infamous official documentation quoter types mentioning that one. Funny like that, huh?

--

Regards,

Greg Rahn

http://structureddata.org

1: http://download.oracle.com/docs/cd/B28359_01/server.111/b28274/iodesign.htm#i19636

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 17, 2008 5:53 PM in response to: benprusinski
Reply

[nobr]Ben,

>

> I was called in for this client after the previous

> Oracle DBA quit on the spot. He was inexperienced and

> built the database with an 8k default size for a 4TB

> data warehouse and reporting financial database on

> Oracle. Fortunately, it was not a production data

> warehouse but rather a copy of production.

>

> For same odd reason, the regular production data

> warehouse used 16k block size and had no issues with

> the ETL nightly jobs which ran between 3-6 hours each

> night.

>

You've described the DBA as inexperienced ; and he's recreated a 4TB database using an extract and reload mechanism (or the

block size couldn't have changed from 16KB to 8KB).

How much time were you given to find out what else he might have done that could have caused the performance to drop ? Missing

indexes, disk hot spots, constraints enabled when they should have been kept disabled, missing statistics.

There are so many things that could have been done differently - how confident are you that nothing but the blocksize changed

?

Taking a different perspective - are you so sure that it was just the block size that made the difference that you're happy

for xxx xxxxxxxxto atrtibute to you the claim that"Oracle consultant Ben Prusinski notes that batch jobs can see a 3x

performance improvement when moved to a larger blocksize"

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

"The greatest enemy of knowledge is not ignorance,

it is the illusion of knowledge." Stephen Hawking.[/nobr]

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 17, 2008 5:59 PM in response to: Jonathan Lewis
Reply

I see from the comments on Steve Karam's blog that xxx xxxxxxxx is having some difficulty in following the technical bits of

the discussion:

http://www.oraclealchemist.com/oracle/hey-guys-does-size-matter/

That's worth remembering the next time you see him insisting that he's seen "plenty of cases where a change in block size has

made a dramatic performance - especially when you have small rows in large blocks"

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

"The greatest enemy of knowledge is not ignorance,

it is the illusion of knowledge." Stephen Hawking.

Howardjr

Posts: 11

Re: Larger vs. Small data block

Posted: Jun 17, 2008 8:33 PM in response to: Jonathan Lewis
Reply

Registered: 6/7/07

Interesting, in some ways:

Xxx's assertion that 'a change in block size has made a dramatic performance [difference]' is clearly true: change from using

16K blocks and you will stop hitting a massively-performance-sapping ASSM bug.

Xxx's intuition-driven approach to Oracle tuning, of course, means that he had no idea such a bug existed. Indeed, his refusal

to believe test cases can be used to demonstrate anything prevents him from uncovering the existence of such bugs. But still,

be charitable: his advice to "change block size" might actually have worked (if the change had been from 16K, of course, and

not to it!)

Mark A.

Williams

Posts: 1,131

Registered: 4/21/98

Re: Larger vs. Small data block

Posted: Jun 17, 2008 8:50 PM in response to: Jonathan Lewis
Reply

This is sort of a cross-posting of a comment I placed on Steve's blog in response to a comment from David Aldridge...

Here's my comment:

I’m wondering if bug 6918210 might be a good one to watch - it has the confirmed flag set to “Y” and a Dev priority of “2″. It

is 32KB blocksize, but involves ASSM and row migration.

While the version of the db in the bug is 10.2.0.3, it seems somewhat related to me...

- Mark

David_Aldridge

Posts: 97

Registered: 4/22/08

Re: Larger vs. Small data block

Posted: Jun 17, 2008 9:11 PM in response to: Howardjr
Reply

It seems like the investigative approach that Xxx advocates, and he should feel free to correct me if I'm wrong here because

I'm just interpreting from his previous comments, is that production systems should be rebuilt on an exact duplicate with only

the block size modified, and a real world workload should be replayed on it (outside of 11g, I'm not sure how this would work

mind you).

So given that you have an 8kb block size in production, it should be rebuilt on 16kb,32kb, 4kb, and 2kb, and each one

compared. That comparison can only be valid after a period of activity to allow indexes to "relax" from their freshly rebuilt

state when some operations (reads) are going to be greatly favoured over others (modifications), yet the data should stay

broadly the same. When it comes to multiple block sizes in a single database there are other dilemmas -- if you want some

tables and indexes on a 16kb block size and some on an 8kb block size, which size should be the default used for the system

tablespace? You surely have to try both. And then you have to try different segments on different sizes, because artificial

tests mean nothing ...

Is that is?

Howardjr

Posts: 11

Registered: 6/7/07

Re: Larger vs. Small data block

Posted: Jun 18, 2008 1:23 AM in response to: David_Aldridge
Reply

I just thought I'd mention it in passing, but I have come across another example of where non-default block sizes appear to be

a big no-no (and in passing, it would seem to resolve a mystery about Windows v. Linux performance that was asked here

recently -I must remember to annotate that other thread, too).

Short story: Intemedia on Windows with 16K blocks manages to retrieve 700 rows per second. On the same server, with the same

instance configuration parameters, but with the table and its index (plus the DR$ tables) all built into 8K tablespace, it

manages to retrieve 127,000 rows per second.

Slightly longer details here: http://tinyurl.com/4kawfr

Repeatable on three production servers, so I'm not just making it up! Just another indication that there are lots more

'surprises' lurking for those that stray from the 8K route, I think!

Updated in light of Jonathan's comments on that blog: In case it's not clear from the short-form comment above, the table and

its index were freshly built for both the 16K and 8K tests, so the usual objection to such anecdotes that 'the rebuild might

be the factor, not the block size' doesn't apply. Both table and index were as freshly-rebuilt in the 16K case as they were in

the 8K one.

My point, however, is not that the reduction in block size is significant. It's simply the fact that (I think) an obvious bug

associated with the use of large block sizes is avoided by the change to the default block size; just as Jonathan's

investigation show an ASSM-related bug is avoided by sticking to default block sizes.

I'm not, in short, arguing that 'small blocks are better'. Merely that non-default block sizes appear to have quite a number

of problems associated with their use which makes the sweeping recommendations from some in these parts to deploy them with

gusto because TPC benchmarks do so very silly advice to even think of following.

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 18, 2008 9:28 AM in response to: David_Aldridge
Reply

With such a long thread such as this, it's often a useful exercise to summarise some of the lessons learnt. IMHO, some of the

key points to come out of this are:

1) Cause and effect is a trap that one can easily fall into. You make a change, you see an effect, you conclude that the

change resulted in the effect. However, unless you fully understand what it is you change and why the change may have made the
effect and how such a change made the effect, you potentially fall into the trap Billy Verreynee described so nicely with the

mad scientist who thought by pulling the wings off a fly, the fly goes deaf as it no longer flies away when he claps his

hands.

There are a number of people who think the database "can't fly" for potentially entirely the wrong reasons and this thread has

classic examples.

2) Be very very careful of folk who continually make claims but lack the ability to back those claims up with either a

repeatable example showing how and why those claims are true or lack to the ability to describe adequately how and why those

claims are true. Because, without one or both of these things, such claims run the real likelihood of being just another mad

scientist not understanding what impact "pulling the wings" off Oracle may have had and who have arrived at entirely the wrong

conclusion.

Again this thread has classic examples of such baseless claims and their possible dangers as it promotes an approach that may

have resulted in indirectly fixing a problem but may have been more easily addressed by simply applying the direct fix. Or it

may promote a behavior of applying the indirect fix which may not have the direct implications the next time it's applied and

so fails dismally.

3) You can't fix a problem effectively unless you understand the problem and you understand both the direct and indirect

implications of the applied solutions. Tuning by intuition, tuning by guesswork, tuning by thinking the database might be deaf
without knowing the database is deaf will lead you down the wrong path again and again and again ...

It's all here in this thread ...

4) If it's too good to be true, it's almost certainly is too good to be true. If (say)someone claims moving to a larger

blocksize results in 10x faster performance, the key question that needs to be asked and clearly understood is exactly why.

5) Although Oracle databases can be viewed as being a rather dry subject matter, some threads can still provide hours of

amusement and hilarious reading ...

Cheers ;)

Richard Foote

http://richardfoote.wordpress.com/

Faust

Posts: 797

From: Middle Europe

Registered: 1/1/07

Re: Larger vs. Small data block

Posted: Jun 18, 2008 10:02 AM in response to: Charles Hooper
Reply

Hi to all!

I decided to test all 'facts' posted in this thread and I see all that 'truth' by my own...

Charles Hooper was so kind to send me his scripts per email.

Now, I'm begging also all others, if they have usefull test scripts and enviroment suggestions, to send me it on my email

address.

Thanks!

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 18, 2008 10:36 AM in response to: Faust
Reply

> Hi to all!

>

> I decided to test all 'facts' posted in this thread

> and I see all that 'truth' by my own...

>

> Charles Hooper was so kind to send me his scripts per

> email.

>

> Now, I'm begging also all others, if they have

> usefull test scripts and enviroment suggestions, to

> send me it on my email address.

>

> Thanks!

There were a couple typos in the script that I provided - a couple of the SELECT statements near the bottom of the script

specified columns that do not exist (ex: PO.ID instead of PO.PURC_ORDER_ID). The 16KB test run required just short of 15 hours

to complete, and it appears that the 8KB test run will require roughly the same amount of time (once it finishes) with ASSM

tablespaces using auto-extent management. I will try to post my results within 12 hours.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Mark A.

Williams

Posts: 1,131

Registered: 4/21/98

Re: Larger vs. Small data block

Posted: Jun 18, 2008 10:52 AM in response to: Richard Foote
Reply

Hi Richard,

Just as long as no one is "jiving us that we were voodoo" :)

Cheers,

Mark

Aman....

Posts: 3,145

From: India

Registered: 5/21/01

Re: Larger vs. Small data block

Posted: Jun 18, 2008 11:07 AM in response to: Charles Hooper
Reply

Charles,

I guess this is requested already but still,is there any where over the web where you can host the scripts of yours so that

all can use it? In that way you wont need to send it by email also.

Regards

Aman....

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 18, 2008 11:23 AM in response to: Aman....
Reply

Aman, It appears that KWrite on Linux (and probably vi or any other text editor on that platform) is able to properly paste a

copy of the scripts that I posted, while preserving the formatting. Notepad on Windows does a terrible job in preserving the

formatting, completely losing line breaks. Wordpad on Windows does better, but loses the initial spaces on the lines.

Microsoft Word and Microsoft Excel are both able to preserve the spaces and line breaks when the web page contents are copied

and then pasted into those programs. A final option is to view the HTML code, and change the

sequence to a CRLF combination (ASCII 13 and ASCII 10), and then also fix the < and > symbols. I do not have a suitable

hosting site for the scripts. Charles Hooper IT Manager/Oracle DBA K&M Machine-Fabricating, Inc.

Aman....

Posts: 3,145

From: India

Registered: 5/21/01

Re: Larger vs. Small data block

Posted: Jun 18, 2008 11:27 AM in response to: Charles Hooper
Reply

Charles,

If you can send it me in mail,I shall try to put it over the web with your permission.

Regards

Aman....

Faust

Posts: 797

From: Middle Europe

Registered: 1/1/07

Re: Larger vs. Small data block

Posted: Jun 18, 2008 11:30 AM in response to: Charles Hooper
Reply

As I already replay to you per email - here at the moment happening European Soccer Championship and that's the reason why

setting proper environment in the evening hours will take a little bit... ;-)

But, for sure, if not earlier, during next weekend I will run tests regarding your scripts...

And because of systematic (and optimized) setting environments, it will be useful for me already now to know/define all test

cases -> because of that my previous post.

> I do not have a suitable hosting site for the

> scripts.

If you like, I can put your scripts on my web server.

Cheers!

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 18, 2008 11:34 AM in response to: Charles Hooper
Reply

If you are using legal version of Toad, then there is a better formating option (Select all code and Shift+Ctrl+F). Oracle Sql

Developer also have formating option (Select all code, right click and Format).

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 18, 2008 11:36 AM in response to: damorgan
Reply

> You can from me.

> I've no doubt you can from Brynn too.

>

> Seems to me it is about time for Greg, Graham, and a

> few others inside to belly up to the keyboard, write

> a definitive statement on the subject, and post it to

> OTN and metalink.

>

> This "controversy" leads to wasted time, wasted

> effort, and in the end makes Oracle look bad because

> it seems to have no official opinion on the matter.

>

> While you're at it please also cut down the body of

> multiple block sizes in a single database and a few

> other oft repeated myths.

>

> Thank you.

I bet Oracle will never publish to mandate db_block_size as 8k across

different applications. I know, there are so many companies running their

Warehouse applications with higher block size with superior performance

over 8k block size. If your request to Oracle is regarding DSS applications,

then you may have to wait for long time.

Faust

Posts: 797

From: Middle Europe

Registered: 1/1/07

Re: Larger vs. Small data block

Posted: Jun 18, 2008 11:47 AM in response to: sp009
Reply

> If you are using legal version of Toad, then there is

> a better formating option (Select all code and

> Shift+Ctrl+F). Oracle Sql Developer also have

> formating option (Select all code, right click and

> Format).

Better try by yourself and see what will happen -> in fact nothing happen...

I didn't try with Toad but I suppose it will have same behavior as SQL Navigator.

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 18, 2008 11:53 AM in response to: damorgan

> Which brings us full circle to the statement Brynn

> made to me and that I have repeated several times in

> this thread. Oracle only tests 8K blocks. So I have

> no doubt there are many issues to be discovered by

> those that follow holistic rather than scientific

> advise with respect to block sizes. If a DBA is not

> going to use an 8K block size they'd better have

> something far more credible to go on than an opinion

> unsupported by rigorous testing.

Why do you think Oracle only tests 8K blocks? Is there any official document

in Metalink says, we don't test or support 16k?

If Oracle doesn't test in 16k, then why do they publish the bug list related to

db_block_size in below Metalink document?

https://metalink.oracle.com/metalink/plsql/f?p=130:14:2769096811376656232::::p14_database_id,p14_docid,p14_show_header,p14_show_help,p14_black_

sp009

Posts: 63

Registered: 12/3/02

Re: Larger vs. Small data block

Posted: Jun 18, 2008 12:11 PM in response to: Faust

> Better try by yourself and see what will happen -> in

> fact nothing happen...

I thought you are smart enough to identify what Toad says "I don't recognize"

OK. Comment the following lines and try again. Once formated, remove those comments

ALTER SYSTEM FLUSH BUFFER_CACHE;

ALTER SESSION SET EVENTS '10046 TRACE NAME CONTEXT FOREVER, LEVEL 8';

ALTER SESSION SET EVENTS '10046 TRACE NAME CONTEXT OFF'+

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 18, 2008 12:18 PM in response to: Faust
Reply

> > I do not have a suitable hosting site for the

> > scripts.

>

> If you like, I can put your scripts on my web

> server.

Faust,

Please feel free to put the scripts on your web server. You might add the following comments, which address typos found in the

script:

* set pagesize 100000 - should have been set pagesize 50000

* AND POL.PART_ID=P.ID - should have been AND POL.PART_ID=P.PART_ID

* PO.ID=POL.PURC_ORDER_ID - should have been PO.PURC_ORDER_ID=POL.PURC_ORDER_ID

The USER_DATA tablespace data file was created with an initial size of 8GB. Under ideal conditions, the undo tablespace should

have also been specified at 8GB to avoid unnecessary extension of the data file for that tablespace.

The typos in the SQL statements allow another, unexpected test - how quickly is Oracle able to reject an invalid SQL statement

due to a change in the system default block size.

It is my hope that this thread will serve as a final destination for anyone wondering if a non-default block size is right for

their database. There have been many great comments, summarizations, and test cases in this thread.

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

user599375

Posts: 365

Registered: 10/9/07

Re: Larger vs. Small data block

Posted: Jun 18, 2008 12:27 PM in response to: Richard Foote
Reply

> 1) Cause and effect is a trap that one can easily

> fall into. You make a change, you see an effect, you

> conclude that the change resulted in the effect.

> However, unless you fully understand what it
> is you change and why the change may have made

> the effect and how such a change made the

> effect, you potentially fall into the trap Billy

> Verreynee described so nicely with the mad scientist

> who thought by pulling the wings off a fly, the fly

> goes deaf as it no longer flies away when he claps

> his hands.

> There are a number of people who think the database

> "can't fly" for potentially entirely the wrong

> reasons and this thread has classic examples.

The conclusion as to 'why' may be inaccurate, but the observation is still correct - if you compare two databases of different

block sizes, and one of them is faster, the fact remains that one of them is faster, regardless of your conclusion.

Oracle is complex enough that while one might be able to explain a phenomena from a single test case designed to test a

particular feature, it is far more difficult to predict what the outcomes would be in a multi-user, multi-processing

environment where a large range of factors, including bugs and all, come into play. It may be the blocksize, it may be

something else, but as long as the benefits are tangible and repeatable, and the tests have not unearthed any other

undesirable side-effects, I would be happy to take the benefits without having an exact clinical understanding of all the

factors at play. If I could pinpoint it, I would of course. But I would not discard the repeatable experimental results just

because I couldn't.

It may not be the wings, it may not be the ears, but it could be the loud noise from the clap which paralyzed the fly's

nervous system. If my intention is to stop the fly from flying, and every time I clapped my hands and pulled off the wings,

the fly stops flying, I have achieved a desired outcome, ie, the database runs faster.

user599375

Posts: 365

Registered: 10/9/07

Re: Larger vs. Small data block

Posted: Jun 18, 2008 12:49 PM in response to: sp009
Reply

> I bet Oracle will never publish to mandate

> db_block_size as 8k across

> different applications. I know, there are so many

> companies running their

> Warehouse applications with higher block size with

> superior performance

> over 8k block size. If your request to Oracle is

> regarding DSS applications,

> then you may have to wait for long time.

I agree. Expecting a 'definitive statement' statement from Oracle is rather unrealistic. Because there isn't one. While 8K may

be appropriate for many, it does not by any means apply to all.

Hans

Forbrich

(...

Posts: 663

From: Alberta, Canada

Registered: 11/17/06

Re: Larger vs. Small data block

Posted: Jun 18, 2008 1:01 PM in response to: user599375
Reply

> > I bet Oracle will never publish to mandate

> > db_block_size as 8k across

> > different applications. I know, there are so many

> > companies running their

> > Warehouse applications with higher block size with

> > superior performance

> > over 8k block size. If your request to Oracle is

> > regarding DSS applications,

> > then you may have to wait for long time.

>

> I agree. Expecting a 'definitive statement' statement

> from Oracle is rather unrealistic.

I don't know about that. I'd say this one which states

"A block size of 8K is optimal for most systems. "

is a pretty definitive and official statement coming right from Oracle.

> Because there isn't one. While 8K may be appropriate for many, it

> does not by any means apply to all.

Very, very true. Oracle always has used the 'it depends' clause, as shown in the statement following the previous quote:

"However, OLTP systems occasionally use smaller block sizes and DSS systems occasionally use larger block sizes."

Faust

Posts: 797

From: Middle Europe

Registered: 1/1/07

Re: Larger vs. Small data block

Posted: Jun 18, 2008 1:45 PM in response to: Charles Hooper
Reply

> Please feel free to put the scripts on your web

> server.

For all who wants to try Charles OLTP test scripts and don't want to test own smartness on formatting tolls...

;-)

You can download scripts from here:

http://www.krisan.eu/oracle/scripts/hooper/oltp_test.zip

Cheers!

benprusinski

Posts: 207

From: San Diego, CA

Registered: 2/1/00

Re: Larger vs. Small data block

Posted: Jun 18, 2008 2:01 PM in response to: Jonathan Lewis
Reply

Hello Jonathan,

In your reply

"How much time were you given to find out what else he might have done that could have >caused the performance to drop ?

Missing indexes, disk hot spots, constraints enabled >when they should have been kept disabled, missing statistics."

AND

"There are so many things that could have been done differently - how confident are you that nothing but the blocksize changed

?"

I checked all performance factors before making the recommendation to change the block size from 8k to 16k. Yes, I checked for

missing statistics and indexes, disk I/O contention issues, etc. I gave the client the recommendations and had a short time

period of several days to resolve the issue. Thus, I was confident of my decision at the time.

I do have a new question, however, for you. In your Oracle Cost Based Optimizer book you mention the issue of block size and

database performance. I don't have the exact quote in front of me but will find it tonight when I get home and find it. You

mention that block size can affect performance. Care to elaborate further on that?

And you said:

"Taking a different perspective - are you so sure that it was just the block size that made the difference that you're happy

for xxx xxxxxxxxto atrtibute to you the claim that"Oracle consultant Ben Prusinski notes that batch jobs can see a 3x

performance improvement when moved to a larger blocksize"

Yes, I am sure of this because it was the solution for the client that I worked at the time.

Now, there are exceptions and new releases of Oracle will affect how performance behaves as bugs and changes to the database

engine do affect matters. Hence we have good discussion of the ASSM bug which I did not know about until it was mentioned here

so thats very intereresting.

Also as I mentioned earlier in the Oracle documentation most notably the Oracle 10g Performance Tuning Guide, block size is

mentioned as one issue that affects overall database performance.

Now the real crux is how valuable are test cases versus real world cases of live production systems? I see two different

branches of thought on this. One group of Oracle professionals believes that test cases are worthless and that only real cases

from live customer systems holds any value for proving a technical point with Oracle. The second camp such as what we have

with Jonathan Lewis holds merit on test cases to find new issues with the Oracle database ie) new bugs with the CBO and so

forth.

Me- I value both testing and actual results on real customer systems. After all, as a practicing DBA and consultant, I would

never want to test a solution right away on a production system without FIRST testing it out on a non-critical system. So to

me, both groups of thought can hold value.

Regards,

Ben Prusinski

http://oracle-magician.blogspot.com/

user599375

Posts: 365

Registered: 10/9/07

Re: Larger vs. Small data block

Posted: Jun 18, 2008 2:16 PM in response to: Hans Forbrich (...
Reply

I was quoting a bit out of context there, and the unrealistic part was referring to an expectation of a '8K for ALL systems'

statement from Oracle. Which would have stopped this thread in its tracks. Then again, maybe not.

> "However, OLTP systems occasionally use smaller block sizes and DSS systems

> occasionally use larger block sizes."

Which would make it pretty 'undefinitive'. Exactly what would qualify as an OLTP, and what as a DSS system.

On which occasion should an OLTP system use a smaller block size? and DSS a larger block size?

The only way to find out is to test with the application you are going to run in production. For existing systems, I wouldn't

bother changing the blocksize unless there is a problem for which other remedies don't seem to gain traction, and for new

systems that are critically enough, I would certainly include the blocksize variable as one of the tests.

However, I detect that some quarters are too quick to dismiss everything that is not 8K, and that is the bit I don't quite

agree with.

user599375

Posts: 365

Registered: 10/9/07

Re: Larger vs. Small data block

Posted: Jun 18, 2008 2:35 PM in response to: benprusinski
Reply

> Me- I value both testing and actual results on real

> customer systems. After all, as a practicing DBA and

> consultant, I would never want to test a solution

> right away on a production system without FIRST

> testing it out on a non-critical system. So to me,

> both groups of thought can hold value.

I agree - both have their purposes. A testcase allows you to isolate and focus on the features you want to test, in controlled

environments so to speak. You also need to test against production systems (hopefully on copies of) because you want to test

the thing as a whole, and not just parts of it.

jgarry

Posts: 128

From: Just outside of

beautiful Vista, California

Registered: 7/20/98

Re: Larger vs. Small data block

Posted: Jun 18, 2008 2:47 PM in response to: Richard Foote
Reply

continuing lessons learnt:

6. Newer database features have more bugs or misfeatures. Sometimes the issues can be more obscure, too.

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 18, 2008 3:56 PM in response to: user599375
Reply

Hi User599375

The problem with being inaccurate with the "why" means you may potentially go down the wrong path again and again trying to

resolve an Oracle issue ...

Taking the fly with no wings going deaf as an example, you might try to get the poor thing to fly by going to all the trouble

of inventing a mini-hearing aid, a minute little device that you can attach to the fly, improving it's hearing capacity by

10000%.

However, you clap your hands and the fly still sits there, slowly rocking from side to side ...

If you move all your indexes into a bigger block size and performance now improves, you're suggesting who cares why it now

improves, the fact performance is better is the important thing.

Wrong.

Performance may only have improved say because you're moved the indexes into a tablespace that's on much faster disks. It's

got nothing directly to do with the block size, the why is entirely because of the faster disks.

Missing this point, when you next go to the considerable trouble and expense to move all indexes into a bigger block size

because hey, it worked before right, you're stunned and your boss is non-too pleased that performance is now no better, maybe

even worse, a lot worse.

This time you're using slower disks or using a slower portion of a disk, or disks with more contention, etc etc, and you don't

get the indirect benefits you got before.

Thinking the why was moving indexes into a bigger block size, or simply not caring why it worked last time, means you've just

gone down the wrong path this time ...

Yes, Oracle is potentially complex, yes, I work in multi-user, multi processor environments. That's why determining what

really works and really doesn't and determining the real "why" is so vitally important.

It's what differentiates a good DBA from not such a good DBA.

It's what differentiates a good fly scientist from a bad fly scientist.

It's what differentiates a good Doctor from a bad Doctor, a Dr who knows "why" that medicine will fix that illness, rather

than just giving some medicine because it appeared to have worked before when he last tried it ...

Food for thought perhaps.

Anyway, 1/2 time is over, back to Euro 2008. Go Spain !!

Cheers

Richard Foote

http://richardfoote.wordpress.com/

Jonathan

Lewis

Re: Larger vs. Small data block

Posted: Jun 18, 2008 4:45 PM in response to: benprusinski
Reply

Posts: 786

From: UK

Registered: 1/23/07

[nobr]Ben,

> I do have a new question, however, for you. In your

> Oracle Cost Based Optimizer book you mention the

> issue of block size and database performance. I don't

> have the exact quote in front of me but will find it

> tonight when I get home and find it. You mention that

> block size can affect performance. Care to elaborate

> further on that?

>

This was the first one I hit when I flipped the book open:

Tuning by changing block sizes: Be very cautious with the option for using different block sizes for different objects – the

feature was introduced to support transportable tablespaces, not as a tuning mechanism.

You may be able to find a few special cases where you can get a positive benefit by changing an object from one block size to

another; but in general you may find that a few side effects due to the optimizer changing its arithmetic may outweigh the

perceived benefits of your chosen block size.

A couple of times I've advised a client to use a 16KB block size because that should reduce the random I/O requests for a

popular query from an average of two reads to just one. But every time I've done that it's a follow-on from advising them to

use an IOT to reduce the I/O count from a couple of hundred per query to two.

>

> "Taking a different perspective - are you so sure

> that it was just the block size that made the

> difference that you're happy for xxx xxxxxxxxto

> atrtibute to you the claim that"Oracle consultant Ben

> Prusinski notes that batch jobs can see a 3x

> performance improvement when moved to a larger

> blocksize"

>

> Yes, I am sure of this because it was the solution

> for the client that I worked at the time.

You should only be sure that recreating the entire database was the most cost-effective thing to do for the customer - and I'd

be perfectly happy to go along with that strategy, i.e: "If we can't find what the problem is within X hours, we might as well

recreate the database because we know the original behaves".

My point, however, was more aimed at the thought that you had described a specific case - and it had been turned into a

sweeping statement that "batch jobs can go 3x as fast if you use a larger block size". I get quite irritated when my comments

are distorted that badly.

>

> Now the real crux is how valuable are test cases

> versus real world cases of live production systems?

> I see two different branches of thought on this.

The distinction between "test cases" and "real world cases" is artifical.

When Steve copied the data into a table on a 4KB block and ran the update, was that still a real world case or did it become a

test case ?

When I took 30 minutes to model the scenario that Steve had described, was that a test case or a real world case ? And when

I'd shown that the model behaved exactly as I had expected (i.e. no statistically significant change in performance) I asked

Steve for more details so that I could refine the model. And when I guessed that he'd done a "null to not null" update, I

solved the problem. In what way was my work not "real world" ?

>

> One group of Oracle professionals believes that test

> cases are worthless and that only real cases from

> live customer systems holds any value for proving a

> technical point with Oracle.

> The second camp such as

> what we have with Jonathan Lewis holds merit on test

> cases to find new issues with the Oracle database ie)

> new bugs with the CBO and so forth.

>

Don't be fooled by the xxxxxxxx propaganda - test cases are about the real world. Most of my test cases are models of real

world client problems. Some of my test cases are then simple refinements of real world models, used to prove a point or

demonstrate a mechanism.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

"The greatest enemy of knowledge is not ignorance,

it is the illusion of knowledge." Stephen Hawking.[/nobr]

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 18, 2008 8:22 PM in response to: Charles Hooper
Reply

> I finished putting together a more comprehensive test

> script that addresses many of the issues that I had

> with my original test script. I performed a test of

> the script last night to look for typos in the

> script, but only had a couple minutes to review the

> output. Foreign keys and indexes will have a

> significant impact on performance, but it is too

> early to tell if block size makes much of a

> difference when the foreign keys are checked during

> an insert or update.

For the first test run, a database using a 16KB default block size was created, specifying the USER_DATA tablespace size at

8GB using ASSM auto. All initialization parameters were identical to those previously posted in this thread. Once the 16KB

test completed, all files related to the 16KB database were removed, the computer was restarted, and then an 8KB default block

size database was created using the same create scripts.

A brief summary of interesting results:

Test run time:

16KB 14.10 Hours

 8KB 13.62 Hours

Interesting sub-results:

INSERTING INTO PO_HEADER

500000 rows created.

16KB Elapsed: 00:00:36.14

 8KB Elapsed: 00:00:50.31

Execution Plan

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 509K| 473M| 2515 (2)| 00:00:36 |

| 1 | TABLE ACCESS FULL| PO_HEADER_TEMP | 509K| 473M| 2515 (2)| 00:00:36 |

--

INSERTING INTO PO_LINES

12205347 rows created.

16KB Elapsed: 00:03:13.82

 8KB Elapsed: 00:03:31.40

Execution Plan

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | INSERT STATEMENT | | 249 | 19422 | 25 (0)| 00:00:01 |

| 1 | COUNT | | | | | |

| 2 | TABLE ACCESS BY INDEX ROWID | PARTS | 249 | 7221 | 23 (0)| 00:00:01 |

| 3 | NESTED LOOPS | | 249 | 19422 | 25 (0)| 00:00:01 |

| 4 | VIEW | | 1 | 49 | 2 (0)| 00:00:01 |

| 5 | COUNT | | | | | |

|* 6 | CONNECT BY WITHOUT FILTERING| | | | | |

| 7 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

|* 8 | INDEX RANGE SCAN | IND_PARTS_7 | 449 | | 1 (0)| 00:00:01 |

12205347 rows created.

16KB Elapsed: 01:08:11.78

 8KB Elapsed: 01:06:01.57

Execution Plan

--

Plan hash value: 1069489789

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 13M| 13G| 47676 (3)| 00:11:08 |

| 1 | TABLE ACCESS FULL| PO_LINE_TEMP | 13M| 13G| 47676 (3)| 00:11:08 |

--

UPDATE-ROLLBACK TEST

3539069 rows updated.

16KB Elapsed: 05:45:30.21

 8KB Elapsed: 05:45:07.17

Rollback complete.

16KB Elapsed: 05:32:18.11

 8KB Elapsed: 05:21:42.73

INSERT-NARROW-TABLE

900000 rows created.

16KB Elapsed: 00:00:07.12

 8KB Elapsed: 00:00:06.53

900000 rows updated.

16KB Elapsed: 00:25:16.75

 8KB Elapsed: 00:24:54.43

900000 rows updated.

16KB Elapsed: 00:44:08.42

 8KB Elapsed: 00:41:22.64

900000 rows updated.

16KB Elapsed: 00:11:53.21

 8KB Elapsed: 00:00:23.78

Select of narrow table

16KB Elapsed: 00:01:45.35

 8KB Elapsed: 00:01:30.06

450000 rows deleted.

16KB Elapsed: 00:00:09.04

 8KB Elapsed: 00:00:12.29

Analytical functions in the test seem to favor smaller block sizes

PART_ID A PRODUCT_CODE MAX_QTY_PRD_ABC MIN_QTY_PRD_ABC DR_QTY_PRD_ABC DR_OP_VEND

------------------------------ - --------------- --------------- --------------- -------------- ----------

10000000PART B FG 100000 .001 13829 1546

1000022PART A FG 100000 .002 1122 7

1000209PART A FG 100000 .002 1016 4

1000259PART C FG 100000 0 3788 31056

...

9999998PART B FG 100000 .001 2205 1

9999999PART B SHOP 99026.807 3489.554 475 1

99694 rows selected.

16KB Elapsed: 00:01:24.86

 8KB Elapsed: 00:00:30.64

PART_ID DESCRIPTION

------------------------------ --

QTY_ON_HAND RANK_PC_QTY AVG_PC_QTY MIN_PC_QTY MAX_PC_QTY COUNT_PC RANK_CC_QTY

AVG_CC_QTY MIN_CC_QTY MAX_CC_QTY COUNT_CC RANK_VENDOR_QTY AVG_VENDOR_QTY

MIN_VENDOR_QTY MAX_VENDOR_QTY COUNT_VENDOR

----------- ----------- ---------- ---------- ---------- ---------- -----------

10000000PART 10000000DESCRIPTION

 99939.083 1597 62825.9166 0 99939.083 74768 309

62855.4356 .002 99939.083 13940 1043 62493.765

 3489.551 99939.083 32190

1000022PART 1000022DESCRIPTION

 17364.487 66930 7573.22913 0 17364.487 74768 12791

7921.08607 .002 17364.487 1452 8 17364.487

 17364.487 17364.487 1

...

9999999PART 9999999DESCRIPTION

 61566.149 3319 23998.0777 3489.551 61566.149 4983 8228

31959.2693 .001 61566.149 6012 5 32125.3248

 3490.111 61566.149 4

99694 rows selected.

16KB Elapsed: 00:03:13.93

 8KB Elapsed: 00:01:36.84

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Hans

Forbrich

(...

Posts: 663

From: Alberta, Canada

Registered: 11/17/06

Re: Larger vs. Small data block

Posted: Jun 18, 2008 8:27 PM in response to: user599375
Reply

> I was quoting a bit out of context there, and the

> unrealistic part was referring to an expectation of a

> '8K for ALL systems' statement from Oracle.

If Oracle wanted to pin it at 8K for ALL systems, they would not have given us an option.

They have made two statements:

1) In most cases, 8K is an appropriate compromise;

2) In some case, which need to be evaluated, tested, benchmarked for a specific situation (an occasion) that 8K recommendation

is not appropriate.

You, and Oracle concur on both those points.

> The only way to find out is to test with the application you are going to

> run in production. For existing systems, I wouldn't bother changing the

> blocksize unless there is a problem for which other remedies don't seem

> to gain traction, and for new systems that are critically enough, I would

> certainly include the blocksize variable as one of the tests.

I started with Oracle products in 1984. The one constant in that time has been official Oracle responses, which are

invariably: "you need to verify [insert definitive statement here] in your own environment"

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 18, 2008 9:33 PM in response to: Charles Hooper
Reply

> For the first test run, a database using a 16KB

> default block size was created, specifying the

> USER_DATA tablespace size at 8GB using ASSM auto.

> All initialization parameters were identical to

> those previously posted in this thread. Once the

> 16KB test completed, all files related to the 16KB

> database were removed, the computer was restarted,

> and then an 8KB default block size database was

> created using the same create scripts.

Output from the 16KB test run... one more typo identified in the output:

16KB ASSM Auto

SP2-0267: pagesize option 100000 out of range (0 through 50000)

 COUNT(*)

11073

Session altered.

Elapsed: 00:00:00.00

Session altered.

Elapsed: 00:00:00.03

Table created.

Elapsed: 00:00:00.82

Index created.

Elapsed: 00:00:00.01

'CREATINGUMS

CREATING UMS

Table created.

Elapsed: 00:00:00.06

'CREATINGVENDORS

CREATING VENDORS

Table created.

Elapsed: 00:00:00.09

Table created.

Elapsed: 00:00:00.15

'CREATINGPARTS

CREATING PARTS

Table created.

Elapsed: 00:00:00.23

Index created.

Elapsed: 00:00:00.00

Index created.

Elapsed: 00:00:00.03

Index created.

Elapsed: 00:00:00.01

Index created.

Elapsed: 00:00:00.01

Index created.

Elapsed: 00:00:00.01

Index created.

Elapsed: 00:00:00.00

Index created.

Elapsed: 00:00:00.01

Table created.

Elapsed: 00:00:00.26

'CREATINGPO_HEADER

CREATING PO_HEADER

Table created.

Elapsed: 00:00:00.12

Index created.

Elapsed: 00:00:00.01

Index created.

Elapsed: 00:00:00.00

Index created.

Elapsed: 00:00:00.01

Index created.

Elapsed: 00:00:00.00

Table created.

Elapsed: 00:00:00.12

'CREATINGPO_LINE

CREATING PO_LINE

Table created.

Elapsed: 00:00:00.14

Index created.

Elapsed: 00:00:00.03

Index created.

Elapsed: 00:00:00.01

Index created.

Elapsed: 00:00:00.00

Index created.

Elapsed: 00:00:00.01

Table created.

Elapsed: 00:00:00.11

Table created.

Elapsed: 00:00:00.01

'INSERTINGINTOLOCATIONS'

INSERTING INTO LOCATIONS

Session altered.

Elapsed: 00:00:00.00

2200 rows created.

Elapsed: 00:00:00.31

Execution Plan

--

Plan hash value: 2528327348

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | INSERT STATEMENT | | 1 | 72 | 4 (0)| 00:00:01 |

| 1 | COUNT | | | | | |

| 2 | NESTED LOOPS | | 1 | 72 | 4 (0)| 00:00:01 |

| 3 | VIEW | | 1 | 36 | 2 (0)| 00:00:01 |

| 4 | COUNT | | | | | |

|* 5 | CONNECT BY WITHOUT FILTERING| | | | | |

| 6 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

|* 7 | VIEW | | 1 | 36 | 2 (0)| 00:00:01 |

| 8 | COUNT | | | | | |

|* 9 | CONNECT BY WITHOUT FILTERING| | | | | |

| 10 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

Predicate Information (identified by operation id):

 5 - filter(LEVEL<=200)

 7 - filter("LOC"."RN">=MOD("WH"."RN",10)*20+1)

 9 - filter(LEVEL<=20)

Statistics

--

 322 recursive calls

 1755 db block gets

 163 consistent gets

 1 physical reads

 861820 redo size

 679 bytes sent via SQL*Net to client

 1075 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 203 sorts (memory)

 0 sorts (disk)

 2200 rows processed

Commit complete.

Elapsed: 00:00:00.01

PL/SQL procedure successfully completed.

Elapsed: 00:00:00.95

8 rows created.

Elapsed: 00:00:00.01

Execution Plan

--

Plan hash value: 1731520519

--

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 1 | 2 (0)| 00:00:01 |

| 1 | COUNT | | | | |

|* 2 | CONNECT BY WITHOUT FILTERING| | | | |

| 3 | FAST DUAL | | 1 | 2 (0)| 00:00:01 |

--

Predicate Information (identified by operation id):

 2 - filter(LEVEL<=8)

Statistics

--

 53 recursive calls

 23 db block gets

 8 consistent gets

 0 physical reads

 0 redo size

 679 bytes sent via SQL*Net to client

 685 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 3 sorts (memory)

 0 sorts (disk)

 8 rows processed

Commit complete.

Elapsed: 00:00:00.00

PL/SQL procedure successfully completed.

Elapsed: 00:00:00.03

'INSERTINGINTOVENDORS'

INSERTING INTO VENDORS

Session altered.

Elapsed: 00:00:00.00

50000 rows created.

Elapsed: 00:00:04.48

Execution Plan

--

Plan hash value: 1731520519

--

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 1 | 2 (0)| 00:00:01 |

| 1 | COUNT | | | | |

|* 2 | CONNECT BY WITHOUT FILTERING| | | | |

| 3 | FAST DUAL | | 1 | 2 (0)| 00:00:01 |

--

Predicate Information (identified by operation id):

 2 - filter(LEVEL<=50000)

Statistics

--

 2365 recursive calls

 11944 db block gets

 2400 consistent gets

 0 physical reads

 18942216 redo size

 680 bytes sent via SQL*Net to client

 2073 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 3 sorts (memory)

 0 sorts (disk)

 50000 rows processed

'ELIMINATINGDUPV'

ELIMINATING DUP V

214 rows deleted.

Elapsed: 00:00:00.21

Execution Plan

--

Plan hash value: 2737996044

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

| 0 | DELETE STATEMENT | | 277 | 12188 | | 1557 (1)| 00:00:22 |

| 1 | DELETE | VENDORS_TEMP | | | | | |

|* 2 | HASH JOIN RIGHT SEMI | | 277 | 12188 | | 1557 (1)| 00:00:22 |

| 3 | VIEW | VW_NSO_1 | 2269 | 49918 | | 1081 (1)| 00:00:16 |

|* 4 | HASH JOIN | | 2269 | 99836 | 1520K| 1081 (1)| 00:00:16 |

| 5 | VIEW | | 45379 | 974K| | 478 (2)| 00:00:07 |

|* 6 | FILTER | | | | | | |

| 7 | SORT GROUP BY | | 45379 | 974K| | 478 (2)| 00:00:07 |

| 8 | TABLE ACCESS FULL| VENDORS_TEMP | 45379 | 974K| | 475 (1)| 00:00:07 |

| 9 | TABLE ACCESS FULL | VENDORS_TEMP | 45379 | 974K| | 475 (1)| 00:00:07 |

| 10 | TABLE ACCESS FULL | VENDORS_TEMP | 45379 | 974K| | 475 (1)| 00:00:07 |

Predicate Information (identified by operation id):

 2 - access("VENDOR_ID"="$nso_col_1" AND "TERMS_NET_DAYS"="$nso_col_2")

 4 - access("V"."VENDOR_ID"="M"."VENDOR_ID")

 filter("V"."TERMS_NET_DAYS">"M"."TERMS_NET_DAYS")

 6 - filter(COUNT(*)>1)

Note

 - dynamic sampling used for this statement

Statistics

--

 64 recursive calls

 229 db block gets

 4560 consistent gets

 0 physical reads

 141680 redo size

 680 bytes sent via SQL*Net to client

 945 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 9 sorts (memory)

 0 sorts (disk)

 214 rows processed

49786 rows created.

Elapsed: 00:00:01.23

Execution Plan

--

Plan hash value: 448063788

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 45379 | 43M| 476 (1)| 00:00:07 |

| 1 | TABLE ACCESS FULL| VENDORS_TEMP | 45379 | 43M| 476 (1)| 00:00:07 |

--

Note

 - dynamic sampling used for this statement

Statistics

--

 2077 recursive calls

 109783 db block gets

 4478 consistent gets

 0 physical reads

 33003408 redo size

 680 bytes sent via SQL*Net to client

 584 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 2 sorts (memory)

 0 sorts (disk)

 49786 rows processed

Commit complete.

Elapsed: 00:00:00.34

PL/SQL procedure successfully completed.

Elapsed: 00:00:01.14

'INSERTINGINTOPARTS'

INSERTING INTO PARTS

Session altered.

Elapsed: 00:00:00.04

100000 rows created.

Elapsed: 00:00:14.03

Execution Plan

--

Plan hash value: 1731520519

--

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 1 | 2 (0)| 00:00:01 |

| 1 | COUNT | | | | |

|* 2 | CONNECT BY WITHOUT FILTERING| | | | |

| 3 | FAST DUAL | | 1 | 2 (0)| 00:00:01 |

--

Predicate Information (identified by operation id):

 2 - filter(LEVEL<=100000)

Statistics

--

 4005 recursive calls

 23681 db block gets

 4617 consistent gets

 0 physical reads

 38076588 redo size

 680 bytes sent via SQL*Net to client

 3187 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 3 sorts (memory)

 0 sorts (disk)

 100000 rows processed

'REMOVINGDUPLICATEPARTS'

REMOVING DUPLICATE PARTS

306 rows deleted.

Elapsed: 00:00:00.43

Execution Plan

--

Plan hash value: 201048256

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

| 0 | DELETE STATEMENT | | 504 | 30240 | | 3137 (1)| 00:00:44 |

| 1 | DELETE | PARTS_TEMP | | | | | |

|* 2 | HASH JOIN RIGHT SEMI | | 504 | 30240 | | 3137 (1)| 00:00:44 |

| 3 | VIEW | VW_NSO_1 | 4136 | 121K| | 2188 (1)| 00:00:31 |

|* 4 | HASH JOIN | | 4136 | 242K| 3408K| 2188 (1)| 00:00:31 |

| 5 | TABLE ACCESS FULL | PARTS_TEMP | 82716 | 2423K| | 948 (1)| 00:00:14 |

| 6 | VIEW | | 82716 | 2423K| | 953 (1)| 00:00:14 |

|* 7 | FILTER | | | | | | |

| 8 | SORT GROUP BY | | 82716 | 2423K| | 953 (1)| 00:00:14 |

| 9 | TABLE ACCESS FULL| PARTS_TEMP | 82716 | 2423K| | 948 (1)| 00:00:14 |

| 10 | TABLE ACCESS FULL | PARTS_TEMP | 82716 | 2423K| | 948 (1)| 00:00:14 |

Predicate Information (identified by operation id):

 2 - access("PART_ID"="$nso_col_1" AND "ORDER_POINT"="$nso_col_2")

 4 - access("V"."PART_ID"="M"."PART_ID")

 filter("V"."ORDER_POINT">"M"."ORDER_POINT")

 7 - filter(COUNT(*)>1)

Note

 - dynamic sampling used for this statement

Statistics

--

 64 recursive calls

 333 db block gets

 8340 consistent gets

 0 physical reads

 259216 redo size

 680 bytes sent via SQL*Net to client

 909 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 9 sorts (memory)

 0 sorts (disk)

 306 rows processed

99694 rows created.

Elapsed: 00:00:06.68

Execution Plan

--

Plan hash value: 3663493195

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 82716 | 96M| 956 (2)| 00:00:14 |

| 1 | TABLE ACCESS FULL| PARTS_TEMP | 82716 | 96M| 956 (2)| 00:00:14 |

--

Note

 - dynamic sampling used for this statement

Statistics

--

 7388 recursive calls

 430352 db block gets

 15397 consistent gets

 2 physical reads

 139580300 redo size

 680 bytes sent via SQL*Net to client

 580 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 2 sorts (memory)

 0 sorts (disk)

 99694 rows processed

99694 rows updated.

Elapsed: 00:03:01.90

Execution Plan

--

Plan hash value: 424025735

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | UPDATE STATEMENT | | 87825 | 2658K| 951 (1)| 00:00:14 |

| 1 | UPDATE | PARTS | | | | |

| 2 | TABLE ACCESS FULL | PARTS | 87825 | 2658K| 951 (1)| 00:00:14 |

|* 3 | VIEW | | 2200 | 68200 | 4 (0)| 00:00:01 |

| 4 | COUNT | | | | | |

| 5 | INDEX FAST FULL SCAN| SYS_C004155 | 2200 | 41800 | 4 (0)| 00:00:01 |

Predicate Information (identified by operation id):

 3 - filter("RN"=MOD(:B1,2000))

Note

 - dynamic sampling used for this statement

Statistics

--

 99 recursive calls

 243046 db block gets

 1430226 consistent gets

 0 physical reads

 30262784 redo size

 681 bytes sent via SQL*Net to client

 798 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 99694 rows processed

66462 rows updated.

Elapsed: 00:00:04.73

Execution Plan

--

Plan hash value: 2752843369

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | UPDATE STATEMENT | | 58484 | 685K| 952 (1)| 00:00:14 |

| 1 | UPDATE | PARTS | | | | |

| 2 | COUNT | | | | | |

|* 3 | TABLE ACCESS FULL| PARTS | 58484 | 685K| 952 (1)| 00:00:14 |

Predicate Information (identified by operation id):

 3 - filter("PURCHASED"='Y')

Note

 - dynamic sampling used for this statement

Statistics

--

 806 recursive calls

 334790 db block gets

 3523 consistent gets

 0 physical reads

 36363728 redo size

 682 bytes sent via SQL*Net to client

 687 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 66462 rows processed

Commit complete.

Elapsed: 00:00:00.00

PL/SQL procedure successfully completed.

Elapsed: 00:00:05.70

'INSERTINGINTOPO_HEADER'

INSERTING INTO PO_HEADER

Session altered.

Elapsed: 00:00:00.03

500000 rows created.

Elapsed: 00:00:57.25

Execution Plan

--

Plan hash value: 1731520519

--

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 1 | 2 (0)| 00:00:01 |

| 1 | COUNT | | | | |

|* 2 | CONNECT BY WITHOUT FILTERING| | | | |

| 3 | FAST DUAL | | 1 | 2 (0)| 00:00:01 |

--

Predicate Information (identified by operation id):

 2 - filter(LEVEL<=500000)

Statistics

--

 4732 recursive calls

 60178 db block gets

 12340 consistent gets

 0 physical reads

 101922912 redo size

 682 bytes sent via SQL*Net to client

 2301 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 3 sorts (memory)

 0 sorts (disk)

 500000 rows processed

500000 rows created.

Elapsed: 00:00:36.14

Execution Plan

--

Plan hash value: 2716451106

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 509K| 473M| 2515 (2)| 00:00:36 |

| 1 | TABLE ACCESS FULL| PO_HEADER_TEMP | 509K| 473M| 2515 (2)| 00:00:36 |

--

Note

 - dynamic sampling used for this statement

Statistics

--

 10634 recursive calls

 3126101 db block gets

 43528 consistent gets

 52 physical reads

 595290444 redo size

 682 bytes sent via SQL*Net to client

 588 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 2 sorts (memory)

 0 sorts (disk)

 500000 rows processed

Commit complete.

Elapsed: 00:00:00.01

PL/SQL procedure successfully completed.

Elapsed: 00:00:06.28

'INSERTINGINTOPO_LINES'

INSERTING INTO PO_LINES

Session altered.

Elapsed: 00:00:00.01

12205347 rows created.

Elapsed: 00:03:13.82

Execution Plan

--

Plan hash value: 3988977532

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | INSERT STATEMENT | | 249 | 19422 | 25 (0)| 00:00:01 |

| 1 | COUNT | | | | | |

| 2 | TABLE ACCESS BY INDEX ROWID | PARTS | 249 | 7221 | 23 (0)| 00:00:01 |

| 3 | NESTED LOOPS | | 249 | 19422 | 25 (0)| 00:00:01 |

| 4 | VIEW | | 1 | 49 | 2 (0)| 00:00:01 |

| 5 | COUNT | | | | | |

|* 6 | CONNECT BY WITHOUT FILTERING| | | | | |

| 7 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

|* 8 | INDEX RANGE SCAN | IND_PARTS_7 | 449 | | 1 (0)| 00:00:01 |

Predicate Information (identified by operation id):

 6 - filter(LEVEL<=500000)

 8 - access("P"."ORDER_POINT">="START_LINE" AND

 "P"."ORDER_POINT"<="START_LINE"+"LINES"-1)

Statistics

--

 10581 recursive calls

 1073189 db block gets

 1769166 consistent gets

 108 physical reads

 1923408908 redo size

 683 bytes sent via SQL*Net to client

 1686 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 3 sorts (memory)

 0 sorts (disk)

 12205347 rows processed

12205347 rows created.

Elapsed: 01:08:11.78

Execution Plan

--

Plan hash value: 1069489789

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 13M| 13G| 47676 (3)| 00:11:08 |

| 1 | TABLE ACCESS FULL| PO_LINE_TEMP | 13M| 13G| 47676 (3)| 00:11:08 |

--

Note

 - dynamic sampling used for this statement

Statistics

--

 106566 recursive calls

 124734674 db block gets

 909474 consistent gets

 166177 physical reads

SP2-0642: SQL*Plus internal error state 1075, context 1:4:4294967295

Unsafe to proceed

 683 bytes sent via SQL*Net to client

 584 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 2 sorts (memory)

 0 sorts (disk)

 12205347 rows processed

Commit complete.

Elapsed: 00:00:00.00

PL/SQL procedure successfully completed.

Elapsed: 00:02:54.90

'UPDATE-ROLLBACKTEST

UPDATE-ROLLBACK TEST

Session altered.

Elapsed: 00:00:00.04

3539069 rows updated.

Elapsed: 05:45:30.21

Execution Plan

--

Plan hash value: 2613867723

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | UPDATE STATEMENT | | 4581K| 52M| 12516 (1)| 00:02:56 |

| 1 | UPDATE | PO_LINE | | | | |

|* 2 | INDEX RANGE SCAN| IND_PO_LINE_3 | 4581K| 52M| 12516 (1)| 00:02:56 |

Predicate Information (identified by operation id):

 2 - access("PART_ID">='3000000PART' AND "PART_ID"<='6576035PART')

Statistics

--

 2092 recursive calls

 115125604 db block gets

 92059751 consistent gets

 2705378 physical reads

 1504368784 redo size

 686 bytes sent via SQL*Net to client

 632 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 1 sorts (memory)

 1 sorts (disk)

 3539069 rows processed

Rollback complete.

Elapsed: 05:32:18.11

'INSERT-NARROW-TABL

INSERT-NARROW-TABLE

Session altered.

Elapsed: 00:00:00.01

900000 rows created.

Elapsed: 00:00:07.12

Execution Plan

--

Plan hash value: 1731520519

--

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 1 | 2 (0)| 00:00:01 |

| 1 | COUNT | | | | |

|* 2 | CONNECT BY WITHOUT FILTERING| | | | |

| 3 | FAST DUAL | | 1 | 2 (0)| 00:00:01 |

--

Predicate Information (identified by operation id):

 2 - filter(LEVEL<=900000)

Statistics

--

 1416 recursive calls

 10454 db block gets

 1321 consistent gets

 21 physical reads

 13762316 redo size

 687 bytes sent via SQL*Net to client

 615 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 9 sorts (memory)

 0 sorts (disk)

 900000 rows processed

Commit complete.

Elapsed: 00:00:02.64

STAT_NAME VALUE

------------------------- ----------

consistent gets 96712536

db block gets 256118893

table fetch by rowid 12211025

table fetch continued row 3

table scan blocks gotten 376281

table scan rows gotten 14838624

900000 rows updated.

Elapsed: 00:25:16.75

Execution Plan

--

Plan hash value: 2650735695

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | UPDATE STATEMENT | | 1 | 26 | 2 (0)| 00:00:01 |

| 1 | UPDATE | NARROW | | | | |

| 2 | TABLE ACCESS FULL| NARROW | 1 | 26 | 2 (0)| 00:00:01 |

Statistics

--

 1798 recursive calls

 400038732 db block gets

 1308238 consistent gets

 1 physical reads

 627119556 redo size

 688 bytes sent via SQL*Net to client

 597 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 900000 rows processed

STAT_NAME VALUE

------------------------- ----------

consistent gets 98020916

db block gets 656157670

table fetch by rowid 12211029

table fetch continued row 3

table scan blocks gotten 378418

table scan rows gotten 16898180

900000 rows updated.

Elapsed: 00:44:08.42

Execution Plan

--

Plan hash value: 2650735695

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | UPDATE STATEMENT | | 1 | 26 | 2 (0)| 00:00:01 |

| 1 | UPDATE | NARROW | | | | |

| 2 | TABLE ACCESS FULL| NARROW | 1 | 26 | 2 (0)| 00:00:01 |

Statistics

--

 850 recursive calls

 735436883 db block gets

 1097045 consistent gets

 0 physical reads

 312503112 redo size

 688 bytes sent via SQL*Net to client

 589 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 900000 rows processed

900000 rows updated.

Elapsed: 00:11:53.21

Execution Plan

--

Plan hash value: 2650735695

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | UPDATE STATEMENT | | 1 | 26 | 2 (0)| 00:00:01 |

| 1 | UPDATE | NARROW | | | | |

| 2 | TABLE ACCESS FULL| NARROW | 1 | 26 | 2 (0)| 00:00:01 |

Statistics

--

 274 recursive calls

 195989191 db block gets

 259615 consistent gets

 0 physical reads

 257410288 redo size

 688 bytes sent via SQL*Net to client

 559 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 900000 rows processed

STAT_NAME VALUE

------------------------- ----------

consistent gets 99377682

db block gets 1587583804

table fetch by rowid 12211033

table fetch continued row 3

table scan blocks gotten 390950

table scan rows gotten 23099883

 C1 C2

---------- ----------

.615661413 .615661413

.694658313 .694658313

.809016947 .809016947

.857167259 .857167259

.933580398 .933580398

.981627168 .981627168

.994521887 .994521887

 1 1

...

900000 rows selected.

Elapsed: 00:01:45.35

Execution Plan

--

Plan hash value: 3043013035

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 26 | 2 (0)| 00:00:01 |

| 1 | TABLE ACCESS FULL| NARROW | 1 | 26 | 2 (0)| 00:00:01 |

--

Statistics

--

 2 recursive calls

 1 db block gets

 63602 consistent gets

 0 physical reads

 176 redo size

 22139480 bytes sent via SQL*Net to client

 660370 bytes received via SQL*Net from client

 60001 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 900000 rows processed

STAT_NAME VALUE

------------------------- ----------

consistent gets 99441356

db block gets 1587583845

table fetch by rowid 12211037

table fetch continued row 3

table scan blocks gotten 454544

table scan rows gotten 48775982

450000 rows deleted.

Elapsed: 00:00:09.04

Execution Plan

--

Plan hash value: 3059185100

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | DELETE STATEMENT | | 1 | 13 | 2 (0)| 00:00:01 |

| 1 | DELETE | NARROW | | | | |

|* 2 | TABLE ACCESS FULL| NARROW | 1 | 13 | 2 (0)| 00:00:01 |

Predicate Information (identified by operation id):

 2 - filter("C1"<0)

Statistics

--

 91 recursive calls

 847973 db block gets

 3855 consistent gets

 0 physical reads

 201202816 redo size

 690 bytes sent via SQL*Net to client

 565 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 450000 rows processed

Commit complete.

Elapsed: 00:00:00.01

'TABLEANDINDEXSTATS'

TABLE AND INDEX STATS

PL/SQL procedure successfully completed.

Elapsed: 00:00:01.45

TABLE_NAME NUM_ROWS BLOCKS AVG_ROW_LEN

------------------------------ ---------- ---------- -----------

LOCATIONS 2200 16 81

NARROW 447112 3838 13

PARTS 99694 2515 362

PO_HEADER 506757 6577 162

PO_LINE 12173239 123536 119

UMS 8 5 7

VENDORS 49786 1255 341

TABLE_NAME INDEX_NAME BLEVEL LEAF_BLOCKS DISTINCT_KEYS AVG_LEAF_BLOCKS_PER_KEY AVG_DATA_BLOCKS_PER_KEY

CLUSTERING_FACTOR

---------- --------------- ---------- ----------- ------------- ----------------------- ----------------------- --------------

LOCATIONS IND_LOCATIONS_1 1 5 200 1 1

204

LOCATIONS SYS_C004155 1 6 2200 1 1

1802

PARTS IND_PARTS_1 1 137 1 137 2493

2493

PARTS IND_PARTS_2 1 277 1 277 2493

2493

PARTS IND_PARTS_3 1 151 8 18 2492

19939

PARTS IND_PARTS_4 1 137 1 137 2493

2493

PARTS IND_PARTS_5 1 128 8983 1 7

66462

PARTS IND_PARTS_6 1 151 8 18 2492

19939

PARTS IND_PARTS_7 1 159 99694 1 1

4810

PARTS SYS_C004205 1 248 99694 1 1

99678

PO_HEADER IND_PO_HEADER_1 2 1024 8983 1 55

500000

PO_HEADER IND_PO_HEADER_2 2 1024 8983 1 55

500000

PO_HEADER IND_PO_HEADER_3 1 724 1 724 6562

6562

PO_HEADER IND_PO_HEADER_4 1 624 2 312 6562

13124

PO_HEADER SYS_C004260 1 931 500000 1 1

101066

PO_LINE IND_PO_LINE_1 0 0 0 0 0

0

PO_LINE IND_PO_LINE_2 0 0 0 0 0

0

PO_LINE IND_PO_LINE_3 2 33070 3545 9 3496

12394446

PO_LINE IND_PO_LINE_4 2 31466 3545 8 3306

11721849

PO_LINE SYS_C004294 2 49721 11723640 1 1

342405

UMS SYS_C004159 0 1 8 1 1

1

VENDORS SYS_C004165 1 97 49786 1 1

49775

System altered.

Elapsed: 00:00:04.90

System altered.

Elapsed: 00:00:00.12

Session altered.

Elapsed: 00:00:00.01

Session altered.

Elapsed: 00:00:00.00

 AND POL.PART_ID=P.ID

 *

ERROR at line 13:

ORA-00904: "P"."ID": invalid identifier

Elapsed: 00:00:00.17

 P.DESCIPTION

 *

ERROR at line 14:

ORA-00904: "P"."DESCIPTION": invalid identifier

Elapsed: 00:00:00.01

 LOCATIONS

2200

Elapsed: 00:00:00.04

Execution Plan

--

Plan hash value: 3384977531

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 4 (0)| 00:00:01 |

| 1 | SORT AGGREGATE | | 1 | | |

| 2 | INDEX FAST FULL SCAN| IND_LOCATIONS_1 | 2200 | 4 (0)| 00:00:01 |

Statistics

--

 1 recursive calls

 0 db block gets

 13 consistent gets

 10 physical reads

 0 redo size

 412 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 1 rows processed

PRODUCT_CODE PARTS_LARGE_WH

--------------- --------------

FG 23129

INVENTORY 3091

JANITOR 1544

OFFICE 1548

SHOP 1545

Elapsed: 00:00:01.01

Execution Plan

--

Plan hash value: 3005476749

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 5 | 115 | 960 (2)| 00:00:14 |

| 1 | SORT GROUP BY | | 5 | 115 | 960 (2)| 00:00:14 |

|* 2 | HASH JOIN | | 5534 | 124K| 959 (2)| 00:00:14 |

| 3 | VIEW | | 1 | 9 | 5 (20)| 00:00:01 |

|* 4 | FILTER | | | | | |

| 5 | HASH GROUP BY | | 1 | 9 | 5 (20)| 00:00:01 |

| 6 | INDEX FAST FULL SCAN| SYS_C004155 | 2200 | 19800 | 4 (0)| 00:00:01 |

| 7 | TABLE ACCESS FULL | PARTS | 99694 | 1363K| 953 (1)| 00:00:14 |

Predicate Information (identified by operation id):

 2 - access("W"."WAREHOUSE_ID"="P"."PRIMARY_WHS_ID")

 4 - filter(COUNT(*)>160)

Statistics

--

 8 recursive calls

 0 db block gets

 2538 consistent gets

 2527 physical reads

 0 redo size

 581 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 5 rows processed

 COUNT(*)

98586

Elapsed: 00:00:00.04

Execution Plan

--

Plan hash value: 3298521242

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 7 | 956 (2)| 00:00:14 |

| 1 | SORT AGGREGATE | | 1 | 7 | | |

|* 2 | TABLE ACCESS FULL| PARTS | 98697 | 674K| 956 (2)| 00:00:14 |

--

Predicate Information (identified by operation id):

 2 - filter("QTY_ON_HAND">1000)

Statistics

--

 8 recursive calls

 0 db block gets

 2525 consistent gets

 0 physical reads

 0 redo size

 413 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 1 rows processed

 COUNT(*)

5528

Elapsed: 00:00:00.43

Execution Plan

--

Plan hash value: 3333389930

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 7 | 474 (1)| 00:00:07 |

| 1 | SORT AGGREGATE | | 1 | 7 | | |

|* 2 | TABLE ACCESS FULL| VENDORS | 49 | 343 | 474 (1)| 00:00:07 |

--

Predicate Information (identified by operation id):

 2 - filter("ZIPCODE">' 44444')

Statistics

--

 8 recursive calls

 0 db block gets

 1263 consistent gets

 1256 physical reads

 0 redo size

 412 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 1 rows processed

 COUNT(*)

0

Elapsed: 00:00:00.07

Execution Plan

--

Plan hash value: 3410092070

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 21 | 4 (0)| 00:00:01 |

| 1 | SORT AGGREGATE | | 1 | 21 | | |

|* 2 | TABLE ACCESS BY INDEX ROWID| PO_LINE | 27 | 567 | 4 (0)| 00:00:01 |

|* 3 | INDEX RANGE SCAN | SYS_C004294 | 27 | | 3 (0)| 00:00:01 |

--

Predicate Information (identified by operation id):

 2 - filter("POL"."PART_ID" IS NOT NULL)

 3 - access("POL"."PURC_ORDER_ID">='10000' AND "POL"."PURC_ORDER_ID"<='20000')

Statistics

--

 8 recursive calls

 0 db block gets

 6 consistent gets

 5 physical reads

 80 redo size

 410 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 1 rows processed

PART_ID A PRODUCT_CODE MAX_QTY_PRD_ABC MIN_QTY_PRD_ABC DR_QTY_PRD_ABC DR_OP_VEND

------------------------------ - --------------- --------------- --------------- -------------- ----------

10000000PART B FG 100000 .001 13829 1546

1000022PART A FG 100000 .002 1122 7

1000209PART A FG 100000 .002 1016 4

1000259PART C FG 100000 0 3788 31056

...

9999998PART B FG 100000 .001 2205 1

9999999PART B SHOP 99026.807 3489.554 475 1

99694 rows selected.

Elapsed: 00:01:24.86

Execution Plan

--

Plan hash value: 2057956106

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 99694 | 3796K| | 2851 (2)| 00:00:40 |

| 1 | SORT ORDER BY | | 99694 | 3796K| 10M| 2851 (2)| 00:00:40 |

| 2 | WINDOW SORT | | 99694 | 3796K| 10M| 2851 (2)| 00:00:40 |

| 3 | WINDOW SORT | | 99694 | 3796K| 10M| 2851 (2)| 00:00:40 |

| 4 | TABLE ACCESS FULL| PARTS | 99694 | 3796K| | 956 (2)| 00:00:14 |

--

Statistics

--

 1 recursive calls

 0 db block gets

 2523 consistent gets

 0 physical reads

 0 redo size

 4109253 bytes sent via SQL*Net to client

 73487 bytes received via SQL*Net from client

 6648 SQL*Net roundtrips to/from client

 3 sorts (memory)

 0 sorts (disk)

 99694 rows processed

VENDOR_ID VENDOR_NAME

--------------- --

1000020VEN 382030VENDOR NAME

1000186VEN 773432VENDOR NAME

1001324VEN 864606VENDOR NAME

1001380VEN 580185VENDOR NAME

...

9999995VEN 802822VENDOR NAME

9999997VEN 716062VENDOR NAME

41120 rows selected.

Elapsed: 00:00:56.68

Execution Plan

--

Plan hash value: 1378243240

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 40634 | 1587K| | 120K (2)| 00:28:04 |

| 1 | MERGE JOIN ANTI | | 40634 | 1587K| | 120K (2)| 00:28:04 |

| 2 | SORT JOIN | | 49786 | 1409K| 3920K| 727 (1)| 00:00:11 |

| 3 | TABLE ACCESS FULL | VENDORS | 49786 | 1409K| | 475 (1)| 00:00:07 |

|* 4 | SORT UNIQUE | | 9152 | 98K| | 119K (2)| 00:27:54 |

| 5 | VIEW | | 9152 | 98K| | 119K (2)| 00:27:54 |

| 6 | HASH UNIQUE | | 9152 | 518K| 793M| 119K (2)| 00:27:54 |

|* 7 | HASH JOIN | | 12M| 673M| | 67484 (2)| 00:15:45 |

|* 8 | TABLE ACCESS FULL | PARTS | 19939 | 331K| | 950 (1)| 00:00:14 |

|* 9 | HASH JOIN | | 12M| 475M| 15M| 66456 (1)| 00:15:31 |

| 10 | TABLE ACCESS FULL| PO_HEADER | 506K| 9897K| | 2500 (2)| 00:00:35 |

| 11 | TABLE ACCESS FULL| PO_LINE | 12M| 243M| | 46778 (1)| 00:10:55 |

Predicate Information (identified by operation id):

 4 - access("V"."VENDOR_ID"="PV"."VENDOR_ID")

 filter("V"."VENDOR_ID"="PV"."VENDOR_ID")

 7 - access("POL"."PART_ID"="P"."PART_ID")

 8 - filter("P"."PRODUCT_CODE"='FG')

 9 - access("PO"."PURC_ORDER_ID"="POL"."PURC_ORDER_ID")

Statistics

--

 29 recursive calls

 0 db block gets

 135804 consistent gets

 129866 physical reads

 152136 redo size

 1584681 bytes sent via SQL*Net to client

 30532 bytes received via SQL*Net from client

 2743 SQL*Net roundtrips to/from client

 2 sorts (memory)

 0 sorts (disk)

 41120 rows processed

PART_ID DESCRIPTION

------------------------------ --

QTY_ON_HAND RANK_PC_QTY AVG_PC_QTY MIN_PC_QTY MAX_PC_QTY COUNT_PC RANK_CC_QTY

AVG_CC_QTY MIN_CC_QTY MAX_CC_QTY COUNT_CC RANK_VENDOR_QTY AVG_VENDOR_QTY

MIN_VENDOR_QTY MAX_VENDOR_QTY COUNT_VENDOR

----------- ----------- ---------- ---------- ---------- ---------- -----------

10000000PART 10000000DESCRIPTION

 99939.083 1597 62825.9166 0 99939.083 74768 309

62855.4356 .002 99939.083 13940 1043 62493.765

 3489.551 99939.083 32190

1000022PART 1000022DESCRIPTION

 17364.487 66930 7573.22913 0 17364.487 74768 12791

7921.08607 .002 17364.487 1452 8 17364.487

 17364.487 17364.487 1

...

9999999PART 9999999DESCRIPTION

 61566.149 3319 23998.0777 3489.551 61566.149 4983 8228

31959.2693 .001 61566.149 6012 5 32125.3248

 3490.111 61566.149 4

99694 rows selected.

Elapsed: 00:03:13.93

Execution Plan

--

Plan hash value: 3734429483

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 99694 | 5841K| | 9084 (1)| 00:02:08 |

| 1 | SORT ORDER BY | | 99694 | 5841K| 15M| 9084 (1)| 00:02:08 |

| 2 | WINDOW SORT | | 99694 | 5841K| 15M| 9084 (1)| 00:02:08 |

| 3 | WINDOW SORT | | 99694 | 5841K| 15M| 9084 (1)| 00:02:08 |

| 4 | WINDOW SORT | | 99694 | 5841K| 15M| 9084 (1)| 00:02:08 |

| 5 | WINDOW SORT | | 99694 | 5841K| 15M| 9084 (1)| 00:02:08 |

| 6 | WINDOW SORT | | 99694 | 5841K| 15M| 9084 (1)| 00:02:08 |

| 7 | WINDOW SORT | | 99694 | 5841K| 15M| 9084 (1)| 00:02:08 |

| 8 | WINDOW SORT | | 99694 | 5841K| 15M| 9084 (1)| 00:02:08 |

| 9 | WINDOW SORT | | 99694 | 5841K| 15M| 9084 (1)| 00:02:08 |

| 10 | TABLE ACCESS FULL| PARTS | 99694 | 5841K| | 956 (2)| 00:00:14 |

--

Statistics

--

 1 recursive calls

 0 db block gets

 2523 consistent gets

 0 physical reads

 0 redo size

 16380898 bytes sent via SQL*Net to client

 73487 bytes received via SQL*Net from client

 6648 SQL*Net roundtrips to/from client

 9 sorts (memory)

 0 sorts (disk)

 99694 rows processed

PRODUCT_CODE UNIT_PRICE UNIT_PRICE UNIT_PRICE UNIT_PRICE UNIT_PRICE

--------------- ---------- ---------- ---------- ---------- ----------

FG 73661 73661 73661 73661 73661

INVENTORY 9971 9971 9971 9971 9971

JANITOR 4984 4984 4984 4984 4984

OFFICE 4991 4991 4991 4991 4991

SHOP 4984 4984 4984 4984 4984

Elapsed: 00:00:00.14

Execution Plan

--

Plan hash value: 815198312

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 5 | 60 | 961 (2)| 00:00:14 |

| 1 | SORT GROUP BY | | 5 | 60 | 961 (2)| 00:00:14 |

| 2 | TABLE ACCESS FULL| PARTS | 99694 | 1168K| 956 (2)| 00:00:14 |

--

Statistics

--

 1 recursive calls

 0 db block gets

 2523 consistent gets

 0 physical reads

 0 redo size

 901 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 5 rows processed

 PO.ID=POL.PURC_ORDER_ID

 *

ERROR at line 25:

ORA-00904: "PO"."ID": invalid identifier

Elapsed: 00:00:00.00

'FINISHE

FINISHED

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

Charles

Hooper

Posts: 228

From: USA

Registered: 1/27/08

Re: Larger vs. Small data block

Posted: Jun 18, 2008 9:37 PM in response to: Charles Hooper
Reply

> For the first test run, a database using a 16KB

> default block size was created, specifying the

> USER_DATA tablespace size at 8GB using ASSM auto.

> All initialization parameters were identical to

> those previously posted in this thread. Once the

> 16KB test completed, all files related to the 16KB

> database were removed, the computer was restarted,

> and then an 8KB default block size database was

> created using the same create scripts.

8KB test run output:

8KB ASSM Auto

SP2-0267: pagesize option 100000 out of range (0 through 50000)

 COUNT(*)

11073

Session altered.

Elapsed: 00:00:00.03

Session altered.

Elapsed: 00:00:00.03

Table created.

Elapsed: 00:00:00.96

Index created.

Elapsed: 00:00:00.03

'CREATINGUMS

CREATING UMS

Table created.

Elapsed: 00:00:00.04

'CREATINGVENDORS

CREATING VENDORS

Table created.

Elapsed: 00:00:00.07

Table created.

Elapsed: 00:00:00.17

'CREATINGPARTS

CREATING PARTS

Table created.

Elapsed: 00:00:00.15

Index created.

Elapsed: 00:00:00.04

Index created.

Elapsed: 00:00:00.01

Index created.

Elapsed: 00:00:00.00

Index created.

Elapsed: 00:00:00.00

Index created.

Elapsed: 00:00:00.01

Index created.

Elapsed: 00:00:00.00

Index created.

Elapsed: 00:00:00.01

Table created.

Elapsed: 00:00:00.14

'CREATINGPO_HEADER

CREATING PO_HEADER

Table created.

Elapsed: 00:00:00.06

Index created.

Elapsed: 00:00:00.01

Index created.

Elapsed: 00:00:00.00

Index created.

Elapsed: 00:00:00.01

Index created.

Elapsed: 00:00:00.00

Table created.

Elapsed: 00:00:00.09

'CREATINGPO_LINE

CREATING PO_LINE

Table created.

Elapsed: 00:00:00.09

Index created.

Elapsed: 00:00:00.01

Index created.

Elapsed: 00:00:00.00

Index created.

Elapsed: 00:00:00.01

Index created.

Elapsed: 00:00:00.00

Table created.

Elapsed: 00:00:00.09

Table created.

Elapsed: 00:00:00.01

'INSERTINGINTOLOCATIONS'

INSERTING INTO LOCATIONS

Session altered.

Elapsed: 00:00:00.03

2200 rows created.

Elapsed: 00:00:00.36

Execution Plan

--

Plan hash value: 2528327348

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | INSERT STATEMENT | | 1 | 72 | 4 (0)| 00:00:01 |

| 1 | COUNT | | | | | |

| 2 | NESTED LOOPS | | 1 | 72 | 4 (0)| 00:00:01 |

| 3 | VIEW | | 1 | 36 | 2 (0)| 00:00:01 |

| 4 | COUNT | | | | | |

|* 5 | CONNECT BY WITHOUT FILTERING| | | | | |

| 6 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

|* 7 | VIEW | | 1 | 36 | 2 (0)| 00:00:01 |

| 8 | COUNT | | | | | |

|* 9 | CONNECT BY WITHOUT FILTERING| | | | | |

| 10 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

Predicate Information (identified by operation id):

 5 - filter(LEVEL<=200)

 7 - filter("LOC"."RN">=MOD("WH"."RN",10)*20+1)

 9 - filter(LEVEL<=20)

Statistics

--

 322 recursive calls

 3401 db block gets

 237 consistent gets

 1 physical reads

 1048152 redo size

 680 bytes sent via SQL*Net to client

 1075 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 203 sorts (memory)

 0 sorts (disk)

 2200 rows processed

Commit complete.

Elapsed: 00:00:00.00

PL/SQL procedure successfully completed.

Elapsed: 00:00:00.90

8 rows created.

Elapsed: 00:00:00.00

Execution Plan

--

Plan hash value: 1731520519

--

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 1 | 2 (0)| 00:00:01 |

| 1 | COUNT | | | | |

|* 2 | CONNECT BY WITHOUT FILTERING| | | | |

| 3 | FAST DUAL | | 1 | 2 (0)| 00:00:01 |

--

Predicate Information (identified by operation id):

 2 - filter(LEVEL<=8)

Statistics

--

 53 recursive calls

 23 db block gets

 8 consistent gets

 0 physical reads

 0 redo size

 680 bytes sent via SQL*Net to client

 685 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 3 sorts (memory)

 0 sorts (disk)

 8 rows processed

Commit complete.

Elapsed: 00:00:00.01

PL/SQL procedure successfully completed.

Elapsed: 00:00:00.01

'INSERTINGINTOVENDORS'

INSERTING INTO VENDORS

Session altered.

Elapsed: 00:00:00.00

50000 rows created.

Elapsed: 00:00:04.54

Execution Plan

--

Plan hash value: 1731520519

--

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 1 | 2 (0)| 00:00:01 |

| 1 | COUNT | | | | |

|* 2 | CONNECT BY WITHOUT FILTERING| | | | |

| 3 | FAST DUAL | | 1 | 2 (0)| 00:00:01 |

--

Predicate Information (identified by operation id):

 2 - filter(LEVEL<=50000)

Statistics

--

 2408 recursive calls

 23094 db block gets

 3680 consistent gets

 0 physical reads

 19768216 redo size

 680 bytes sent via SQL*Net to client

 2073 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 3 sorts (memory)

 0 sorts (disk)

 50000 rows processed

'ELIMINATINGDUPV'

ELIMINATING DUP V

214 rows deleted.

Elapsed: 00:00:00.25

Execution Plan

--

Plan hash value: 2737996044

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

| 0 | DELETE STATEMENT | | 611 | 26884 | | 2227 (1)| 00:00:27 |

| 1 | DELETE | VENDORS_TEMP | | | | | |

|* 2 | HASH JOIN RIGHT SEMI | | 611 | 26884 | | 2227 (1)| 00:00:27 |

| 3 | VIEW | VW_NSO_1 | 2506 | 55132 | | 1540 (1)| 00:00:19 |

|* 4 | HASH JOIN | | 2506 | 107K| 1672K| 1540 (1)| 00:00:19 |

| 5 | VIEW | | 50120 | 1076K| | 690 (2)| 00:00:09 |

|* 6 | FILTER | | | | | | |

| 7 | SORT GROUP BY | | 50120 | 1076K| | 690 (2)| 00:00:09 |

| 8 | TABLE ACCESS FULL| VENDORS_TEMP | 50120 | 1076K| | 686 (1)| 00:00:09 |

| 9 | TABLE ACCESS FULL | VENDORS_TEMP | 50120 | 1076K| | 686 (1)| 00:00:09 |

| 10 | TABLE ACCESS FULL | VENDORS_TEMP | 50120 | 1076K| | 686 (1)| 00:00:09 |

Predicate Information (identified by operation id):

 2 - access("VENDOR_ID"="$nso_col_1" AND "TERMS_NET_DAYS"="$nso_col_2")

 4 - access("V"."VENDOR_ID"="M"."VENDOR_ID")

 filter("V"."TERMS_NET_DAYS">"M"."TERMS_NET_DAYS")

 6 - filter(COUNT(*)>1)

Note

 - dynamic sampling used for this statement

Statistics

--

 64 recursive calls

 243 db block gets

 8434 consistent gets

 0 physical reads

 142140 redo size

 680 bytes sent via SQL*Net to client

 945 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 9 sorts (memory)

 0 sorts (disk)

 214 rows processed

49786 rows created.

Elapsed: 00:00:01.28

Execution Plan

--

Plan hash value: 448063788

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 50120 | 48M| 687 (1)| 00:00:09 |

| 1 | TABLE ACCESS FULL| VENDORS_TEMP | 50120 | 48M| 687 (1)| 00:00:09 |

--

Note

 - dynamic sampling used for this statement

Statistics

--

 2163 recursive calls

 125204 db block gets

 8073 consistent gets

 0 physical reads

 34300492 redo size

 680 bytes sent via SQL*Net to client

 584 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 2 sorts (memory)

 0 sorts (disk)

 49786 rows processed

Commit complete.

Elapsed: 00:00:00.00

PL/SQL procedure successfully completed.

Elapsed: 00:00:01.71

'INSERTINGINTOPARTS'

INSERTING INTO PARTS

Session altered.

Elapsed: 00:00:00.03

100000 rows created.

Elapsed: 00:00:14.62

Execution Plan

--

Plan hash value: 1731520519

--

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 1 | 2 (0)| 00:00:01 |

| 1 | COUNT | | | | |

|* 2 | CONNECT BY WITHOUT FILTERING| | | | |

| 3 | FAST DUAL | | 1 | 2 (0)| 00:00:01 |

--

Predicate Information (identified by operation id):

 2 - filter(LEVEL<=100000)

Statistics

--

 4048 recursive calls

 45669 db block gets

 7183 consistent gets

 0 physical reads

 39714000 redo size

 679 bytes sent via SQL*Net to client

 3187 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 3 sorts (memory)

 0 sorts (disk)

 100000 rows processed

'REMOVINGDUPLICATEPARTS'

REMOVING DUPLICATE PARTS

306 rows deleted.

Elapsed: 00:00:00.51

Execution Plan

--

Plan hash value: 1732788817

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

| 0 | DELETE STATEMENT | | 1125 | 67500 | | 4483 (1)| 00:00:54 |

| 1 | DELETE | PARTS_TEMP | | | | | |

|* 2 | HASH JOIN RIGHT SEMI | | 1125 | 67500 | | 4483 (1)| 00:00:54 |

| 3 | VIEW | VW_NSO_1 | 4613 | 135K| | 3113 (1)| 00:00:38 |

|* 4 | HASH JOIN | | 4613 | 270K| 3784K| 3113 (1)| 00:00:38 |

| 5 | VIEW | | 92253 | 2702K| | 1375 (1)| 00:00:17 |

|* 6 | FILTER | | | | | | |

| 7 | SORT GROUP BY | | 92253 | 2702K| | 1375 (1)| 00:00:17 |

| 8 | TABLE ACCESS FULL| PARTS_TEMP | 92253 | 2702K| | 1368 (1)| 00:00:17 |

| 9 | TABLE ACCESS FULL | PARTS_TEMP | 92253 | 2702K| | 1368 (1)| 00:00:17 |

| 10 | TABLE ACCESS FULL | PARTS_TEMP | 92253 | 2702K| | 1368 (1)| 00:00:17 |

Predicate Information (identified by operation id):

 2 - access("PART_ID"="$nso_col_1" AND "ORDER_POINT"="$nso_col_2")

 4 - access("V"."PART_ID"="M"."PART_ID")

 filter("V"."ORDER_POINT">"M"."ORDER_POINT")

 6 - filter(COUNT(*)>1)

Note

 - dynamic sampling used for this statement

Statistics

--

 64 recursive calls

 363 db block gets

 16002 consistent gets

 0 physical reads

 260076 redo size

 680 bytes sent via SQL*Net to client

 909 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 9 sorts (memory)

 0 sorts (disk)

 306 rows processed

99694 rows created.

Elapsed: 00:00:11.39

Execution Plan

--

Plan hash value: 3663493195

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 92253 | 107M| 1379 (2)| 00:00:17 |

| 1 | TABLE ACCESS FULL| PARTS_TEMP | 92253 | 107M| 1379 (2)| 00:00:17 |

--

Note

 - dynamic sampling used for this statement

Statistics

--

 7680 recursive calls

 518800 db block gets

 28462 consistent gets

 2 physical reads

 148738772 redo size

 680 bytes sent via SQL*Net to client

 580 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 2 sorts (memory)

 0 sorts (disk)

 99694 rows processed

99694 rows updated.

Elapsed: 00:02:58.09

Execution Plan

--

Plan hash value: 424025735

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | UPDATE STATEMENT | | 83068 | 2514K| 1371 (1)| 00:00:17 |

| 1 | UPDATE | PARTS | | | | |

| 2 | TABLE ACCESS FULL | PARTS | 83068 | 2514K| 1371 (1)| 00:00:17 |

|* 3 | VIEW | | 2200 | 68200 | 5 (0)| 00:00:01 |

| 4 | COUNT | | | | | |

| 5 | INDEX FAST FULL SCAN| SYS_C004155 | 2200 | 41800 | 5 (0)| 00:00:01 |

Predicate Information (identified by operation id):

 3 - filter("RN"=MOD(:B1,2000))

Note

 - dynamic sampling used for this statement

Statistics

--

 117 recursive calls

 236588 db block gets

 1830048 consistent gets

 0 physical reads

 29202520 redo size

 679 bytes sent via SQL*Net to client

 798 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 99694 rows processed

66462 rows updated.

Elapsed: 00:00:04.70

Execution Plan

--

Plan hash value: 2752843369

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | UPDATE STATEMENT | | 55512 | 650K| 1373 (1)| 00:00:17 |

| 1 | UPDATE | PARTS | | | | |

| 2 | COUNT | | | | | |

|* 3 | TABLE ACCESS FULL| PARTS | 55512 | 650K| 1373 (1)| 00:00:17 |

Predicate Information (identified by operation id):

 3 - filter("PURCHASED"='Y')

Note

 - dynamic sampling used for this statement

Statistics

--

 849 recursive calls

 338348 db block gets

 6665 consistent gets

 0 physical reads

 36639124 redo size

 682 bytes sent via SQL*Net to client

 687 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 66462 rows processed

Commit complete.

Elapsed: 00:00:00.01

PL/SQL procedure successfully completed.

Elapsed: 00:00:06.06

'INSERTINGINTOPO_HEADER'

INSERTING INTO PO_HEADER

Session altered.

Elapsed: 00:00:00.01

500000 rows created.

Elapsed: 00:00:58.20

Execution Plan

--

Plan hash value: 1731520519

--

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 1 | 2 (0)| 00:00:01 |

| 1 | COUNT | | | | |

|* 2 | CONNECT BY WITHOUT FILTERING| | | | |

| 3 | FAST DUAL | | 1 | 2 (0)| 00:00:01 |

--

Predicate Information (identified by operation id):

 2 - filter(LEVEL<=500000)

Statistics

--

 4818 recursive calls

 117983 db block gets

 19640 consistent gets

 0 physical reads

 106248468 redo size

 683 bytes sent via SQL*Net to client

 2301 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 3 sorts (memory)

 0 sorts (disk)

 500000 rows processed

500000 rows created.

Elapsed: 00:00:50.31

Execution Plan

--

Plan hash value: 2716451106

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 501K| 465M| 3690 (2)| 00:00:45 |

| 1 | TABLE ACCESS FULL| PO_HEADER_TEMP | 501K| 465M| 3690 (2)| 00:00:45 |

--

Note

 - dynamic sampling used for this statement

Statistics

--

 10927 recursive calls

 3939186 db block gets

 82773 consistent gets

 0 physical reads

 610376888 redo size

 683 bytes sent via SQL*Net to client

 588 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 2 sorts (memory)

 0 sorts (disk)

 500000 rows processed

Commit complete.

Elapsed: 00:00:00.01

PL/SQL procedure successfully completed.

Elapsed: 00:00:07.31

'INSERTINGINTOPO_LINES'

INSERTING INTO PO_LINES

Session altered.

Elapsed: 00:00:00.00

12205347 rows created.

Elapsed: 00:03:31.40

Execution Plan

--

Plan hash value: 3988977532

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | INSERT STATEMENT | | 249 | 19422 | 47 (0)| 00:00:01 |

| 1 | COUNT | | | | | |

| 2 | TABLE ACCESS BY INDEX ROWID | PARTS | 249 | 7221 | 45 (0)| 00:00:01 |

| 3 | NESTED LOOPS | | 249 | 19422 | 47 (0)| 00:00:01 |

| 4 | VIEW | | 1 | 49 | 2 (0)| 00:00:01 |

| 5 | COUNT | | | | | |

|* 6 | CONNECT BY WITHOUT FILTERING| | | | | |

| 7 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

|* 8 | INDEX RANGE SCAN | IND_PARTS_7 | 449 | | 2 (0)| 00:00:01 |

Predicate Information (identified by operation id):

 6 - filter(LEVEL<=500000)

 8 - access("P"."ORDER_POINT">="START_LINE" AND

 "P"."ORDER_POINT"<="START_LINE"+"LINES"-1)

Statistics

--

 10948 recursive calls

 2160840 db block gets

 2563123 consistent gets

 223 physical reads

 2005089824 redo size

 683 bytes sent via SQL*Net to client

 1686 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 3 sorts (memory)

 0 sorts (disk)

 12205347 rows processed

12205347 rows created.

Elapsed: 01:06:01.57

Execution Plan

--

Plan hash value: 1069489789

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 12M| 12G| 69005 (3)| 00:13:49 |

| 1 | TABLE ACCESS FULL| PO_LINE_TEMP | 12M| 12G| 69005 (3)| 00:13:49 |

--

Note

 - dynamic sampling used for this statement

Statistics

--

 89663 recursive calls

 141754417 db block gets

 1778244 consistent gets

 283312 physical reads

SP2-0642: SQL*Plus internal error state 1075, context 1:4:4294967295

Unsafe to proceed

 683 bytes sent via SQL*Net to client

 584 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 2 sorts (memory)

 0 sorts (disk)

 12205347 rows processed

Commit complete.

Elapsed: 00:00:00.01

PL/SQL procedure successfully completed.

Elapsed: 00:03:23.98

'UPDATE-ROLLBACKTEST

UPDATE-ROLLBACK TEST

Session altered.

Elapsed: 00:00:00.00

3539069 rows updated.

Elapsed: 05:45:07.17

Execution Plan

--

Plan hash value: 2613867723

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | UPDATE STATEMENT | | 4595K| 52M| 25429 (1)| 00:05:06 |

| 1 | UPDATE | PO_LINE | | | | |

|* 2 | INDEX RANGE SCAN| IND_PO_LINE_3 | 4595K| 52M| 25429 (1)| 00:05:06 |

Predicate Information (identified by operation id):

 2 - access("PART_ID">='3000000PART' AND "PART_ID"<='6576035PART')

Statistics

--

 2454 recursive calls

 467030361 db block gets

 383084403 consistent gets

 2847244 physical reads

 1528989796 redo size

 687 bytes sent via SQL*Net to client

 632 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 1 sorts (memory)

 1 sorts (disk)

 3539069 rows processed

Rollback complete.

Elapsed: 05:21:42.73

'INSERT-NARROW-TABL

INSERT-NARROW-TABLE

Session altered.

Elapsed: 00:00:00.00

900000 rows created.

Elapsed: 00:00:06.53

Execution Plan

--

Plan hash value: 1731520519

--

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 1 | 2 (0)| 00:00:01 |

| 1 | COUNT | | | | |

|* 2 | CONNECT BY WITHOUT FILTERING| | | | |

| 3 | FAST DUAL | | 1 | 2 (0)| 00:00:01 |

--

Predicate Information (identified by operation id):

 2 - filter(LEVEL<=900000)

Statistics

--

 1226 recursive calls

 16656 db block gets

 1956 consistent gets

 17 physical reads

 14130936 redo size

 689 bytes sent via SQL*Net to client

 615 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 5 sorts (memory)

 0 sorts (disk)

 900000 rows processed

Commit complete.

Elapsed: 00:00:04.93

STAT_NAME VALUE

------------------------- ----------

consistent gets 390140533

db block gets 627207988

table fetch by rowid 12211909

table fetch continued row 78

table scan blocks gotten 653182

table scan rows gotten 14697509

900000 rows updated.

Elapsed: 00:24:54.43

Execution Plan

--

Plan hash value: 2650735695

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | UPDATE STATEMENT | | 1 | 26 | 2 (0)| 00:00:01 |

| 1 | UPDATE | NARROW | | | | |

| 2 | TABLE ACCESS FULL| NARROW | 1 | 26 | 2 (0)| 00:00:01 |

Statistics

--

 1587 recursive calls

 337707586 db block gets

 1350729 consistent gets

 1 physical reads

 525073528 redo size

 689 bytes sent via SQL*Net to client

 597 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 900000 rows processed

STAT_NAME VALUE

------------------------- ----------

consistent gets 391491412

db block gets 964915617

table fetch by rowid 12211913

table fetch continued row 78

table scan blocks gotten 656119

table scan rows gotten 16501306

900000 rows updated.

Elapsed: 00:41:22.64

Execution Plan

--

Plan hash value: 2650735695

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | UPDATE STATEMENT | | 1 | 26 | 2 (0)| 00:00:01 |

| 1 | UPDATE | NARROW | | | | |

| 2 | TABLE ACCESS FULL| NARROW | 1 | 26 | 2 (0)| 00:00:01 |

Statistics

--

 739 recursive calls

 583033051 db block gets

 1593474 consistent gets

 0 physical reads

 409352180 redo size

 688 bytes sent via SQL*Net to client

 589 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 900000 rows processed

900000 rows updated.

Elapsed: 00:00:23.78

Execution Plan

--

Plan hash value: 2650735695

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | UPDATE STATEMENT | | 1 | 26 | 2 (0)| 00:00:01 |

| 1 | UPDATE | NARROW | | | | |

| 2 | TABLE ACCESS FULL| NARROW | 1 | 26 | 2 (0)| 00:00:01 |

Statistics

--

 316 recursive calls

 5490094 db block gets

 191730 consistent gets

 0 physical reads

 269343620 redo size

 689 bytes sent via SQL*Net to client

 559 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 900000 rows processed

STAT_NAME VALUE

------------------------- ----------

consistent gets 393276734

db block gets 1553438826

table fetch by rowid 12211917

table fetch continued row 78

table scan blocks gotten 678262

table scan rows gotten 23114805

 C1 C2

---------- ----------

-0.08715570 -0.0871557

-0.19080896 -0.19080896

-0.24192186 -0.24192186

-0.34202011 -0.34202011

-0.43837111 -0.43837111

...

 .97814398 .97814398

.999847391 .999847391

900000 rows selected.

Elapsed: 00:01:30.06

Execution Plan

--

Plan hash value: 3043013035

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 26 | 2 (0)| 00:00:01 |

| 1 | TABLE ACCESS FULL| NARROW | 1 | 26 | 2 (0)| 00:00:01 |

--

Statistics

--

 2 recursive calls

 1 db block gets

 66188 consistent gets

 0 physical reads

 176 redo size

 22139480 bytes sent via SQL*Net to client

 660370 bytes received via SQL*Net from client

 60001 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 900000 rows processed

STAT_NAME VALUE

------------------------- ----------

consistent gets 393343002

db block gets 1553438867

table fetch by rowid 12211921

table fetch continued row 78

table scan blocks gotten 744445

table scan rows gotten 38441953

450000 rows deleted.

Elapsed: 00:00:12.29

Execution Plan

--

Plan hash value: 3059185100

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | DELETE STATEMENT | | 1 | 13 | 2 (0)| 00:00:01 |

| 1 | DELETE | NARROW | | | | |

|* 2 | TABLE ACCESS FULL| NARROW | 1 | 13 | 2 (0)| 00:00:01 |

Predicate Information (identified by operation id):

 2 - filter("C1"<0)

Statistics

--

 100 recursive calls

 863894 db block gets

 6544 consistent gets

 0 physical reads

 201784852 redo size

 691 bytes sent via SQL*Net to client

 565 bytes received via SQL*Net from client

 4 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 450000 rows processed

Commit complete.

Elapsed: 00:00:00.00

'TABLEANDINDEXSTATS'

TABLE AND INDEX STATS

PL/SQL procedure successfully completed.

Elapsed: 00:00:01.36

TABLE_NAME NUM_ROWS BLOCKS AVG_ROW_LEN

------------------------------ ---------- ---------- -----------

LOCATIONS 2200 28 81

NARROW 449533 6480 13

PARTS 99694 5032 362

PO_HEADER 494003 13409 162

PO_LINE 12211036 249506 119

UMS 8 5 7

VENDORS 49786 2512 341

TABLE_NAME INDEX_NAME BLEVEL LEAF_BLOCKS DISTINCT_KEYS AVG_LEAF_BLOCKS_PER_KEY AVG_DATA_BLOCKS_PER_KEY

CLUSTERING_FACTOR

---------- --------------- ---------- ----------- ------------- ----------------------- ----------------------- --------------

LOCATIONS IND_LOCATIONS_1 1 10 200 1 1

223

LOCATIONS SYS_C004155 1 12 2200 1 1

1907

PARTS IND_PARTS_1 1 317 1 317 4985

4985

PARTS IND_PARTS_2 2 556 1 556 4985

4985

PARTS IND_PARTS_3 1 305 8 38 4971

39774

PARTS IND_PARTS_4 1 317 1 317 4985

4985

PARTS IND_PARTS_5 1 256 8983 1 7

66462

PARTS IND_PARTS_6 1 305 8 38 4971

39774

PARTS IND_PARTS_7 1 318 99694 1 1

9416

PARTS SYS_C004205 1 485 99694 1 1

99683

PO_HEADER IND_PO_HEADER_1 2 2048 8983 1 55

500000

PO_HEADER IND_PO_HEADER_2 2 2048 8983 1 55

500000

PO_HEADER IND_PO_HEADER_3 2 1386 1 1386 13158

13158

PO_HEADER IND_PO_HEADER_4 2 1196 2 598 13158

26316

PO_HEADER SYS_C004260 2 1850 500000 1 1

106840

PO_LINE IND_PO_LINE_1 0 0 0 0 0

0

PO_LINE IND_PO_LINE_2 0 0 0 0 0

0

PO_LINE IND_PO_LINE_3 2 63711 3602 17 3199

11525977

PO_LINE IND_PO_LINE_4 2 69482 3602 19 3497

12599568

PO_LINE SYS_C004294 2 102972 12418918 1 1

666825

UMS SYS_C004159 0 1 8 1 1

1

VENDORS SYS_C004165 1 199 49786 1 1

49776

System altered.

Elapsed: 00:00:07.10

System altered.

Elapsed: 00:00:00.01

Session altered.

Elapsed: 00:00:00.00

Session altered.

Elapsed: 00:00:00.00

 AND POL.PART_ID=P.ID

 *

ERROR at line 13:

ORA-00904: "P"."ID": invalid identifier

Elapsed: 00:00:00.12

 P.DESCIPTION

 *

ERROR at line 14:

ORA-00904: "P"."DESCIPTION": invalid identifier

Elapsed: 00:00:00.01

 LOCATIONS

2200

Elapsed: 00:00:00.01

Execution Plan

--

Plan hash value: 3384977531

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 4 (0)| 00:00:01 |

| 1 | SORT AGGREGATE | | 1 | | |

| 2 | INDEX FAST FULL SCAN| IND_LOCATIONS_1 | 2200 | 4 (0)| 00:00:01 |

Statistics

--

 1 recursive calls

 0 db block gets

 17 consistent gets

 14 physical reads

 0 redo size

 412 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 1 rows processed

PRODUCT_CODE PARTS_LARGE_WH

--------------- --------------

FG 25474

INVENTORY 3389

JANITOR 1697

OFFICE 1694

SHOP 1696

Elapsed: 00:00:01.01

Execution Plan

--

Plan hash value: 3005476749

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 5 | 115 | 1383 (2)| 00:00:17 |

| 1 | SORT GROUP BY | | 5 | 115 | 1383 (2)| 00:00:17 |

|* 2 | HASH JOIN | | 5534 | 124K| 1381 (1)| 00:00:17 |

| 3 | VIEW | | 1 | 9 | 6 (17)| 00:00:01 |

|* 4 | FILTER | | | | | |

| 5 | HASH GROUP BY | | 1 | 9 | 6 (17)| 00:00:01 |

| 6 | INDEX FAST FULL SCAN| SYS_C004155 | 2200 | 19800 | 5 (0)| 00:00:01 |

| 7 | TABLE ACCESS FULL | PARTS | 99694 | 1363K| 1374 (1)| 00:00:17 |

Predicate Information (identified by operation id):

 2 - access("W"."WAREHOUSE_ID"="P"."PRIMARY_WHS_ID")

 4 - filter(COUNT(*)>160)

Statistics

--

 8 recursive calls

 0 db block gets

 5059 consistent gets

 5048 physical reads

 0 redo size

 581 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 5 rows processed

 COUNT(*)

98586

Elapsed: 00:00:00.04

Execution Plan

--

Plan hash value: 3298521242

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 7 | 1378 (2)| 00:00:17 |

| 1 | SORT AGGREGATE | | 1 | 7 | | |

|* 2 | TABLE ACCESS FULL| PARTS | 98697 | 674K| 1378 (2)| 00:00:17 |

--

Predicate Information (identified by operation id):

 2 - filter("QTY_ON_HAND">1000)

Statistics

--

 8 recursive calls

 0 db block gets

 5042 consistent gets

 0 physical reads

 0 redo size

 413 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 1 rows processed

 COUNT(*)

5528

Elapsed: 00:00:00.34

Execution Plan

--

Plan hash value: 3333389930

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 7 | 685 (1)| 00:00:09 |

| 1 | SORT AGGREGATE | | 1 | 7 | | |

|* 2 | TABLE ACCESS FULL| VENDORS | 49 | 343 | 685 (1)| 00:00:09 |

--

Predicate Information (identified by operation id):

 2 - filter("ZIPCODE">' 44444')

Statistics

--

 8 recursive calls

 0 db block gets

 2520 consistent gets

 2514 physical reads

 0 redo size

 412 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 1 rows processed

 COUNT(*)

0

Elapsed: 00:00:00.06

Execution Plan

--

Plan hash value: 3410092070

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 21 | 5 (0)| 00:00:01 |

| 1 | SORT AGGREGATE | | 1 | 21 | | |

|* 2 | TABLE ACCESS BY INDEX ROWID| PO_LINE | 27 | 567 | 5 (0)| 00:00:01 |

|* 3 | INDEX RANGE SCAN | SYS_C004294 | 27 | | 3 (0)| 00:00:01 |

--

Predicate Information (identified by operation id):

 2 - filter("POL"."PART_ID" IS NOT NULL)

 3 - access("POL"."PURC_ORDER_ID">='10000' AND "POL"."PURC_ORDER_ID"<='20000')

Statistics

--

 8 recursive calls

 0 db block gets

 6 consistent gets

 5 physical reads

 80 redo size

 410 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 1 rows processed

PART_ID A PRODUCT_CODE MAX_QTY_PRD_ABC MIN_QTY_PRD_ABC DR_QTY_PRD_ABC DR_OP_VEND

------------------------------ - --------------- --------------- --------------- -------------- ----------

10000000PART B FG 100000 .001 13829 1546

1000022PART A FG 100000 .002 1122 7

1000209PART A FG 100000 .002 1016 4

1000259PART C FG 100000 0 3788 31056

...

9999998PART B FG 100000 .001 2205 1

9999999PART B SHOP 99026.807 3489.554 475 1

99694 rows selected.

Elapsed: 00:00:30.64

Execution Plan

--

Plan hash value: 2057956106

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 99694 | 3796K| | 4398 (1)| 00:00:53 |

| 1 | SORT ORDER BY | | 99694 | 3796K| 10M| 4398 (1)| 00:00:53 |

| 2 | WINDOW SORT | | 99694 | 3796K| 10M| 4398 (1)| 00:00:53 |

| 3 | WINDOW SORT | | 99694 | 3796K| 10M| 4398 (1)| 00:00:53 |

| 4 | TABLE ACCESS FULL| PARTS | 99694 | 3796K| | 1377 (1)| 00:00:17 |

--

Statistics

--

 1 recursive calls

 0 db block gets

 5040 consistent gets

 0 physical reads

 0 redo size

 4109388 bytes sent via SQL*Net to client

 73487 bytes received via SQL*Net from client

 6648 SQL*Net roundtrips to/from client

 3 sorts (memory)

 0 sorts (disk)

 99694 rows processed

VENDOR_ID VENDOR_NAME

--------------- --

1000020VEN 382030VENDOR NAME

1000186VEN 773432VENDOR NAME

1001324VEN 864606VENDOR NAME

1001380VEN 580185VENDOR NAME

...

9999995VEN 802822VENDOR NAME

9999997VEN 716062VENDOR NAME

41120 rows selected.

Elapsed: 00:00:54.95

Execution Plan

--

Plan hash value: 1378243240

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 40976 | 1600K| | 155K (2)| 00:31:06 |

| 1 | MERGE JOIN ANTI | | 40976 | 1600K| | 155K (2)| 00:31:06 |

| 2 | SORT JOIN | | 49786 | 1409K| 3928K| 1087 (1)| 00:00:14 |

| 3 | TABLE ACCESS FULL | VENDORS | 49786 | 1409K| | 686 (1)| 00:00:09 |

|* 4 | SORT UNIQUE | | 8579 | 94369 | | 154K (2)| 00:30:53 |

| 5 | VIEW | | 8579 | 94369 | | 154K (2)| 00:30:53 |

| 6 | HASH UNIQUE | | 8579 | 485K| 795M| 154K (2)| 00:30:53 |

|* 7 | HASH JOIN | | 12M| 675M| | 93284 (1)| 00:18:40 |

|* 8 | TABLE ACCESS FULL | PARTS | 19939 | 331K| | 1371 (1)| 00:00:17 |

|* 9 | HASH JOIN | | 12M| 477M| 15M| 91821 (1)| 00:18:22 |

| 10 | TABLE ACCESS FULL| PO_HEADER | 494K| 9648K| | 3672 (2)| 00:00:45 |

| 11 | TABLE ACCESS FULL| PO_LINE | 12M| 244M| | 68156 (1)| 00:13:38 |

Predicate Information (identified by operation id):

 4 - access("V"."VENDOR_ID"="PV"."VENDOR_ID")

 filter("V"."VENDOR_ID"="PV"."VENDOR_ID")

 7 - access("POL"."PART_ID"="P"."PART_ID")

 8 - filter("P"."PRODUCT_CODE"='FG')

 9 - access("PO"."PURC_ORDER_ID"="POL"."PURC_ORDER_ID")

Statistics

--

 29 recursive calls

 0 db block gets

 277040 consistent gets

 262432 physical reads

 504764 redo size

 1584681 bytes sent via SQL*Net to client

 30532 bytes received via SQL*Net from client

 2743 SQL*Net roundtrips to/from client

 2 sorts (memory)

 0 sorts (disk)

 41120 rows processed

PART_ID DESCRIPTION

------------------------------ --

QTY_ON_HAND RANK_PC_QTY AVG_PC_QTY MIN_PC_QTY MAX_PC_QTY COUNT_PC RANK_CC_QTY

AVG_CC_QTY MIN_CC_QTY MAX_CC_QTY COUNT_CC RANK_VENDOR_QTY AVG_VENDOR_QTY

MIN_VENDOR_QTY MAX_VENDOR_QTY COUNT_VENDOR

----------- ----------- ---------- ---------- ---------- ---------- -----------

10000000PART 10000000DESCRIPTION

 99939.083 1597 62825.9166 0 99939.083 74768 309

62855.4356 .002 99939.083 13940 1043 62493.765

 3489.551 99939.083 32190

1000022PART 1000022DESCRIPTION

 17364.487 66930 7573.22913 0 17364.487 74768 12791

7921.08607 .002 17364.487 1452 8 17364.487

 17364.487 17364.487 1

...

9999999PART 9999999DESCRIPTION

 61566.149 3319 23998.0777 3489.551 61566.149 4983 8228

31959.2693 .001 61566.149 6012 5 32125.3248

 3490.111 61566.149 4

99694 rows selected.

Elapsed: 00:01:36.84

Execution Plan

--

Plan hash value: 3734429483

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 99694 | 5841K| | 14340 (1)| 00:02:53 |

| 1 | SORT ORDER BY | | 99694 | 5841K| 15M| 14340 (1)| 00:02:53 |

| 2 | WINDOW SORT | | 99694 | 5841K| 15M| 14340 (1)| 00:02:53 |

| 3 | WINDOW SORT | | 99694 | 5841K| 15M| 14340 (1)| 00:02:53 |

| 4 | WINDOW SORT | | 99694 | 5841K| 15M| 14340 (1)| 00:02:53 |

| 5 | WINDOW SORT | | 99694 | 5841K| 15M| 14340 (1)| 00:02:53 |

| 6 | WINDOW SORT | | 99694 | 5841K| 15M| 14340 (1)| 00:02:53 |

| 7 | WINDOW SORT | | 99694 | 5841K| 15M| 14340 (1)| 00:02:53 |

| 8 | WINDOW SORT | | 99694 | 5841K| 15M| 14340 (1)| 00:02:53 |

| 9 | WINDOW SORT | | 99694 | 5841K| 15M| 14340 (1)| 00:02:53 |

| 10 | TABLE ACCESS FULL| PARTS | 99694 | 5841K| | 1377 (1)| 00:00:17 |

--

Statistics

--

 1 recursive calls

 0 db block gets

 5040 consistent gets

 0 physical reads

 0 redo size

 16377604 bytes sent via SQL*Net to client

 73487 bytes received via SQL*Net from client

 6648 SQL*Net roundtrips to/from client

 9 sorts (memory)

 0 sorts (disk)

 99694 rows processed

PRODUCT_CODE UNIT_PRICE UNIT_PRICE UNIT_PRICE UNIT_PRICE UNIT_PRICE

--------------- ---------- ---------- ---------- ---------- ----------

FG 73661 73661 73661 73661 73661

INVENTORY 9971 9971 9971 9971 9971

JANITOR 4984 4984 4984 4984 4984

OFFICE 4991 4991 4991 4991 4991

SHOP 4984 4984 4984 4984 4984

Elapsed: 00:00:00.15

Execution Plan

--

Plan hash value: 815198312

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 5 | 60 | 1384 (2)| 00:00:17 |

| 1 | SORT GROUP BY | | 5 | 60 | 1384 (2)| 00:00:17 |

| 2 | TABLE ACCESS FULL| PARTS | 99694 | 1168K| 1377 (1)| 00:00:17 |

--

Statistics

--

 1 recursive calls

 0 db block gets

 5040 consistent gets

 0 physical reads

 0 redo size

 901 bytes sent via SQL*Net to client

 381 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 1 sorts (memory)

 0 sorts (disk)

 5 rows processed

 PO.ID=POL.PURC_ORDER_ID

 *

ERROR at line 25:

ORA-00904: "PO"."ID": invalid identifier

Elapsed: 00:00:00.00

'FINISHE

FINISHED

Charles Hooper

IT Manager/Oracle DBA

K&M Machine-Fabricating, Inc.

user599375

Posts: 365

Registered: 10/9/07

Re: Larger vs. Small data block

Posted: Jun 19, 2008 12:59 AM in response to: Richard Foote
Reply

> The problem with being inaccurate with the "why"

> means you may potentially go down the wrong path

> again and again trying to resolve an Oracle issue

Not necessarily. If it achieves the results you want, and the results are repeatable, you, by definition, are on the right

path. The conclusion may still be wrong, but the desired result is not.

Achieving perfect accuracy is great, and certainly should be strived for. But, how realistic is that? Why do you think this

thread has gone to this size if accuracy were easily obtainable, and the method of achieving that accuracy consistently

repeatable for all?

The fact is, even when you think you know the answer, its precise role in a busy multi-user, multi-processing environment is

going to be less cut-and-dry. And you could have wasted a lot of time in attempting to arrive at a perfect answer when a

simple experiment (with its less than perfect conclusions) would have pointed you in the right direction early on. Don't get

me wrong - I still value accuracy, but I don't think achieving 100% is the best value for money.

> Taking the fly with no wings going deaf as an

> example, you might try to get the poor thing to fly

> by going to all the trouble of inventing a

> mini-hearing aid, a minute little device that you can

> attach to the fly, improving it's hearing capacity by

> 10000%.

> However, you clap your hands and the fly still sits

> there, slowly rocking from side to side ...

No trouble at all, because I don't want the fly to umm, fly. Desired results achieved. If I wanted the fly to fly, I would

have taken a different approach like not pulling the wings off in the first place.

>

> If you move all your indexes into a bigger block size

> and performance now improves, you're suggesting who

> cares why it now improves, the fact performance is

> better is the important thing.

> Wrong.

Never said that. Hope the other parts of my reply makes this clear.

> Performance may only have improved say because you're

> moved the indexes into a tablespace that's on much

> faster disks. It's got nothing directly to do with

> the block size, the why is entirely because of the

> faster disks.

Irrelevant argument. That would apply if the person doesn't know the difference between slower and faster disks, and ignored

it completely as a variable, in which case the point of this whole thread is moot.

> Thinking the why was moving indexes into a bigger

> block size, or simply not caring why it worked last

> time, means you've just gone down the wrong path this

> time ...

That's over-simplification. You deal with the variables you know and can control, but also accept that there are some

variables you don't know, but the effects of which you can deduce from your repeatable experiments. Maybe some don't know the

difference between faster and slower disks, but I'm sure the majority do.

> Yes, Oracle is potentially complex, yes, I work in

> multi-user, multi processor environments. That's why

> determining what really works and really doesn't and

> determining the real "why" is so vitally important.

Commendable aim. I prefer the 80-20 rule.You can expend 80% of the effort in determining the 'why', but recognise that the

remaining 20% may not be cost-effective for the employer.

SeanMacGC

Posts: 7

Registered: 10/30/06

Re: Larger vs. Small data block

Posted: Jun 19, 2008 6:34 AM in response to: user599375
Reply

>Commendable aim. I prefer the 80-20 rule.You can expend 80% of the effort in determining the 'why', but recognise that the

remaining 20% may not be cost-effective for the employer.

Surely with the improving performance analytics of Oracle with each release that 20% will steadily diminish as a practicable

threshold of effort?

benprusinski

Posts: 207

From: San Diego, CA

Registered: 2/1/00

Re: Larger vs. Small data block

Posted: Jun 19, 2008 1:40 PM in response to: Jonathan Lewis
Reply

Jonathan we actually agree on something!

You should only be sure that recreating the entire database was the most cost-effective thing to do for the customer - and I'd

be perfectly happy to go along with that strategy, i.e: "If we can't find what the problem is within X hours, we might as well

recreate the database because we know the original behaves".

But aside from our differences in opinion and so forth, we can at least agree that

1) Testing and evidence is important

2) Bugs do exist in Oracle code and always will

3) Oracle Documentation is never perfect

4) There is possible bug in ASSM

I think that the next time I find something wrong in the documentation or Metalink, I will follow your recommendation and file

a documentation bug with Oracle to get it fixed or addressed. I must admit that aside from the heated debate this has been an

interesting thread!

Regards,

Ben Prusinski

http://oracle-magician.blogspot.com/

David_Aldridge

Posts: 97

Registered: 4/22/08

Re: Larger vs. Small data block

Posted: Jun 19, 2008 1:47 PM in response to: user619401
Reply

(inspired by comments here: http://www.oraclealchemist.com/oracle/hey-guys-does-size-matter)

The issue of the potential bug appears to be as perfect an illustration as one could wish for of the importance of

understanding the root cause for a problem. Who would want to move their application to a new database with a new block size,

or take on the increased complexity of a multi-blocksize configuration, when they can potentially address the same problem by

modifying PCTFREE on a couple of tables and maybe performing a "move" to avoid future migration problems?

Jonathan

Lewis

Posts: 786

From: UK

Registered: 1/23/07

Re: Larger vs. Small data block

Posted: Jun 19, 2008 2:21 PM in response to: benprusinski
Reply

>

> But aside from our differences in opinion and so

> forth, we can at least agree that

>

> 1) Testing and evidence is important

> 2) Bugs do exist in Oracle code and always will

> 3) Oracle Documentation is never perfect

> 4) There is possible bug in ASSM

>

Agreed on all four. And I'd say that any differences we've expressed are more a matter of degree and timing rather than

principle.

Regards

Jonathan Lewis

http://jonathanlewis.wordpress.com

http://www.jlcomp.demon.co.uk

Richard

Foote

Posts: 279

From: Canberra Australia

Registered: 12/13/99

Re: Larger vs. Small data block

Posted: Jun 19, 2008 4:27 PM in response to: David_Aldridge
Reply

> The issue of the potential bug appears to be as

> perfect an illustration as one could wish for of the

> importance of understanding the root cause for a

> problem. Who would want to move their application to

> a new database with a new block size, or take on the

> increased complexity of a multi-blocksize

> configuration, when they can potentially address the

> same problem by modifying PCTFREE on a couple of

> tables and maybe performing a "move" to avoid future

> migration problems?

Hi David

Precisely !!

Can you imagine implementing the use of a different sized block tablespace/database when perhaps say changing the

db_file_multiblock_read_count would have achieved the same results.

However, if one has been advocating the use of multi sized blocks for years, if one may have perhaps implemented such so-

called "solutions" and charging for such at client sites, if one has perhaps written and is selling such advice in books,

perhaps one is placed in a position of choosing just which facts meets ones theories and disregard the rest.

Cheers

Richard Foote

http://richardfoote.wordpress.com/

