Oracle Scratchpad

March 19, 2019


Filed under: 18c,Oracle,Troubleshooting — Jonathan Lewis @ 12:05 pm GMT Mar 19,2019

A few months ago Franck Pachot wrote about a recursive SQL statement that kept appearing in the library cache. I discovered the note today because I had just found a client site where the following statement suddenly appeared near the top of the “SQL ordered by Executions” section of their AWR reports after they had upgraded to 18c.

select domain# from sys.im_domain$ where objn = :1 and col# = :2

I found Franck’s article by the simple expedient of typing the entire query into a Google search – his note was the first hit on the list, and he had a convenient example (based on the SCOTT schema) to demonstrate the effect, so I built the tables from the schema and ran a simple test with extended SQL tracing (event 10046) enabled.

Here’s an extract (with no deletions) from the resulting trace file:

PARSING IN CURSOR #139819795591784 len=110 dep=0 uid=104 oct=3 lid=104 tim=31306461773 hv=3572295767 ad='6bf8b8a0' sqlid='8n2bcc3aftu2r'
select /*+ leading(EMP DEPT) USE_HASH(DEPT) USE_HASH(BONUS) */ * from DEPT natural join EMP natural join BONUS
PARSE #139819795591784:c=59,e=59,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=4262704031,tim=31306461772

PARSING IN CURSOR #139819795585328 len=64 dep=1 uid=0 oct=3 lid=0 tim=31306461966 hv=1240924087 ad='69a8b760' sqlid='0b639nx4zdzxr'
select domain# from sys.im_domain$ where objn = :1 and col# = :2
PARSE #139819795585328:c=37,e=37,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,plh=2321277860,tim=31306461965
EXEC #139819795585328:c=32,e=31,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,plh=2321277860,tim=31306462058
FETCH #139819795585328:c=17,e=17,p=0,cr=1,cu=0,mis=0,r=0,dep=1,og=4,plh=2321277860,tim=31306462098
STAT #139819795585328 id=1 cnt=0 pid=0 pos=1 obj=10422 op='TABLE ACCESS BY INDEX ROWID IM_DOMAIN$ (cr=1 pr=0 pw=0 str=1 time=21 us cost=0 size=39 card=1)'
STAT #139819795585328 id=2 cnt=0 pid=1 pos=1 obj=10423 op='INDEX UNIQUE SCAN IM_DOMAIN_UK (cr=1 pr=0 pw=0 str=1 time=18 us cost=0 size=0 card=1)'
CLOSE #139819795585328:c=5,e=5,dep=1,type=1,tim=31306462287

EXEC #139819795591784:c=484,e=484,p=0,cr=1,cu=0,mis=0,r=0,dep=0,og=1,plh=4262704031,tim=31306462316
FETCH #139819795591784:c=0,e=804,p=0,cr=44,cu=0,mis=0,r=0,dep=0,og=1,plh=4262704031,tim=31306463191
STAT #139819795591784 id=1 cnt=0 pid=0 pos=1 obj=0 op='HASH JOIN  (cr=45 pr=0 pw=0 str=1 time=1222 us cost=72 size=97 card=1)'
STAT #139819795591784 id=2 cnt=4 pid=1 pos=1 obj=0 op='HASH JOIN  (cr=45 pr=0 pw=0 str=1 time=1001 us cost=70 size=232 card=4)'
STAT #139819795591784 id=3 cnt=4 pid=2 pos=1 obj=117764 op='TABLE ACCESS FULL EMP (cr=22 pr=0 pw=0 str=1 time=259 us cost=35 size=152 card=4)'
STAT #139819795591784 id=4 cnt=4 pid=2 pos=2 obj=117765 op='TABLE ACCESS FULL DEPT (cr=22 pr=0 pw=0 str=1 time=81 us cost=35 size=80 card=4)'
STAT #139819795591784 id=5 cnt=0 pid=1 pos=2 obj=117766 op='TABLE ACCESS FULL BONUS (cr=0 pr=0 pw=0 str=1 time=4 us cost=2 size=39 card=1)'
CLOSE #139819795591784:c=24,e=24,dep=0,type=1,tim=31306508552

PARSE #139819795591784:c=41,e=42,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=4262704031,tim=31306508798
PARSE #139819795585328:c=21,e=22,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,plh=2321277860,tim=31306509010
EXEC #139819795585328:c=132,e=132,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,plh=2321277860,tim=31306509220
FETCH #139819795585328:c=20,e=19,p=0,cr=1,cu=0,mis=0,r=0,dep=1,og=4,plh=2321277860,tim=31306509415
CLOSE #139819795585328:c=8,e=8,dep=1,type=3,tim=31306509494
EXEC #139819795591784:c=682,e=704,p=0,cr=1,cu=0,mis=0,r=0,dep=0,og=1,plh=4262704031,tim=31306509558
FETCH #139819795591784:c=588,e=1246,p=0,cr=44,cu=0,mis=0,r=0,dep=0,og=1,plh=4262704031,tim=31306511014
CLOSE #139819795591784:c=23,e=22,dep=0,type=3,ti

As you can see, every time I do a parse call for the query against the SCOTT schema (PARSE #139819795591784), Oracle does a parse/exec/fetch/close for the query against im_domain$ (PARSE #139819795585328) – and this happens even when the SCOTT query is in the session cursor cache!

As Franck points out, this looks like something to do with the In Memory option even though the option wasn’t enabled in his database, and wasn’t enabled in my client’s database. Once you’ve got a reproducible example of a problem, though, you can start fiddling to see if you can bypass it. In this case I decided to check all the parameters to do with the in-memory option – which is a bit like hard work because there are 208 parameters that include the word “inmemory”. After checking the descriptions of the first twenty or so I decided there was an easier option – if Oracle is asking about “domains” for columns possibly it’s something to do with the relatively new “join group” feature for in-memory columnar compression, so I ran a query to produce the list of parameter names and description for parameter with the words “join” and “group” in their names – there are two:

_sqlexec_join_group_aware_hj_enabled              enable/disable join group aware hash join
_sqlexec_join_group_aware_hj_unencoded_rowset     minimum number of unencoded rowsets processed before adaptation 

The first one looks rather promising – and it has a default value to TRUE, and it can be changed by “alter session” or “alter system”. So I executed:

alter session set "_sqlexec_join_group_aware_hj_enabled" = false;
alter system flush shared_pool;

Then I ran my test again and voila! there it wasn’t. No more queries against in_domain$.

Problem solved (until the client decides they want to use the in-memory option, perhaps).

There may be other reasons why this recursive query appears which aren’t to do with hash joins, of course, but join groups are specifically to allow efficient hash joins with the in-memory option, (it’s a trick to do with common encoding for compression to allow Bloom filtering to eliminate CUs without decoding) so I’m hoping I won’t have to track down and eliminate another sources for the query.



  1. Interesting, I was sure I’d see that query in my 18c databases too — some upgraded, some new, but nothing. The only big difference is that all of my 18c databases are on 18.5 (Jan 2019 RU), so perhaps it was a bug quietly fixed since Oracle Support reveals no trace of any issues with SYS.IM_DOMAIN$.

    Comment by Bob Bryla — March 19, 2019 @ 1:48 pm GMT Mar 19,2019 | Reply

  2. I see this in my 12.2 database after just upgrading from 12.1. A massive outlier in executions.

    Comment by cs — May 11, 2020 @ 11:50 am BST May 11,2020 | Reply

  3. In reply to a couple of points raised by Patrick Joliffe on Twitterwhen I tweeted a reminder about this note:

    OK, interesting, I remember @FranckPachot presentation at #POUG where he mentioned the recursive query. Was it a ‘real’ problem for customer? Is “SQL ordered by Executions”, valid place to start tuning? im_domain$ had many records? Was the execution plan bad?

    And why so many hints in your testcase :) Sorry so many questions for twitter, I think your blog still not accept comments from HK :)

    A year on from writing the note I have no memory of whether or not this was a real problem for the customer. Since the statement was “near the top” rather than “at the top” I suspect it was probably an interesting oddity rather than a problem; however when you’re near Cary Milsap’s “knee of the curve” (i.e. near the boundary of stable performance) any extra, unexpected, workload could be the little bit that pushes you into catastrophe – so it’s worth knowing about the little strays that can be eliminated easily. It’s interesting to note that comment #2 above describes the query as a “massive outlier in executions” – but even then it might not be a real problem.

    “SQL ordered by Executions” is not a valid place to start tuning but it’s a place that you might get to very quickly, and a place where you might first take action. Symptoms pointing to it would be:

    • pressure for CPU,
    • latch and mutex contention, especially in the library cache,
    • unreasonable numbers of executions per second in the load profile,
    • and a shortfall comparing CPU time (instance total) with the CPU captured in the “SQL ordered by CPU”.

    One of the more common examples of this Top N leaping out as a real problem comes from worst use of FGAC/RLS/VPD.

    The query itself probably did virtually no work. I don’t recall, but if inmemory had not been enabled, and even if it were enabled and no join groups had been defined, there would be no rows in im_domain$ and the access path would have been a near instantaneous access by primary key to find no data in the index. Any problem would arise from a very large number of parse and execute calls that put pressure on library cache latches and mutexes and the potential for wasting CPU on spinning under concurrent access.

    This particular test case was the one that Franck Pachot created; but as a general rule it makes sense to use hinted SQL to demonstrate a point so that anyone repeating the test on a different platform or version would get the same execution plan. This is particularly important when using a small data set to demonstrate a detail that might otherwise only appear with a particular pattern in a large data set. In this case the anomaly shows up only for a hash join so hinting hash joins everywhere makes sense.

    Comment by Jonathan Lewis — May 12, 2020 @ 10:33 am BST May 12,2020 | Reply

  4. Thanks Jonathan

    Comment by — May 12, 2020 @ 11:18 am BST May 12,2020 | Reply

RSS feed for comments on this post. TrackBack URI

Comments and related questions are welcome.

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Website Powered by

%d bloggers like this: